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Objetivos de este tema

@ introducir el concepto de representacién lineal;

@ conocer una clase de ejemplos: representaciones matriciales regulares;
@ introducir el concepto de subespacio invariante;

@ introducir el concepto de subrepresentacion.

@ introducir el concepto de mapeo G-lineal;
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Prerrequisitos para este tema

@ conceptos basicos de algebra lineal;
@ conceptos basicos de la teoria de grupos;

@ optativo: teoria de médulos.
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Prerrequisitos para este tema

@ conceptos basicos de algebra lineal;
@ conceptos basicos de la teoria de grupos;
@ optativo: teoria de médulos.
Para estudiar representaciones unitarias fuertemente continuas

de grupos localmente compactos topoldgicos en espacios de Hilbert,

también se necesitan conceptos de topologia y de andlisis funcional.
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@ Definicion: representacién lineal

© Representaciones regulares

9 Subespacios invariantes y subrepresentaciones

@ Morfismos entre representaciones
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@ Definicion: representacién lineal
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Representaciones lineales finito-dimensionales de grupos finitos

En este tema, trabajamos solamente con grupos finitos

y solamente con espacios vectoriales complejos de dimension finita.

Dado un espacio vectorial V/, denotamos por GL(V') al grupo de sus automorfismos
(isomorfismos V — V).

Una representacién lineal de un grupo G sobre un espacio vectorial V
es un homomorfismo p: G — GL(V).

Vamos a trabajar solamente con representaciones lineales,

por eso decimos simplemente representacion .

Si dim(V) = n, se dice que n es el grado de la representacién p.
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Una subclase de representaciones:

representaciones matriciales

Para V = C", el grupo GL(V) se identifica con GL,(C).
En otras palabras, los operadores lineales invertibles V — V
se identifican con matrices invertibles de clase M ,(C).

Una representaciéon matricial de G de grado n es un homeomorfismo p: G — GL,(C).
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Ejemplo: representacién de Z, como matrices de rotacion

G=17,=17/(nZ), V = C?

cos
p(k + nZ) =

s 2km
sin “n

Se puede ver que la definicién es consistente:

si j — k € nZ, entonces j y k dan la misma matriz.

2km
n

2km
n
2km

COsS “n

—sin
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Ejemplo: representacién de Z, como matrices de rotacion

] |

G=17,=17/(nZ), V = C?

cos% —sin 2"7”
plk+ nL) = 2k 2k
sin TW cosT7r

Se puede ver que la definicién es consistente:

si j — k € nZ, entonces j y k dan la misma matriz.

Ejercicio: demostrar la propiedad p(a + b) = p(a)p(b).

Es un caso particular de la regla de multiplicacién de matrices de rotacién.
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Ejemplo: representacién de Z, como raices de la unidad

Im
’ SeanneN, G=7Z,=12Z/(nZ),
vV =C!
£6 €6 © 2ri
Epi=¢en
Definimos ¢: Z, — GL1(C),
3
€6 6

Re o(k + nZ) = ek,

Ejercicio: la definicién es consistente.
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Ejemplo: representacién trivial (principal)

Sea G un grupo y sea V' un espacio vectorial.
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Ejemplo: representacién trivial (principal)

Sea G un grupo y sea V' un espacio vectorial.

Denotamos por I al operador identidad V — V:

lv=v (veVv).
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Ejemplo: representacién trivial (principal)

Sea G un grupo y sea V' un espacio vectorial.

Denotamos por I al operador identidad V — V:
lv=v (veVv).

Definimos 7: G — GL(V),
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Observacién: pueden haber varias representaciones de G sobre V

Por ejemplo, si G = Zs y V = C?, las siguientes dos representaciones son diferentes:

e p: G— GL(V),
cos 2’;” —sin 47 2"”
p(k + 3Z) = 2k7r 2k7r
sin cos 257

e 7: G— GL(V),

_,_|r o
p(k+3Z).—l—l0 1].

Sin embargo, en muchos textos sobre la teoria de representaciones
es comln omitir p y solamente mencionar Gy V.

Por ejemplo, es comin usar la notacién gv en vez de p(g)v.
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© Representaciones regulares
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Subclase de representaciones: representaciones regulares

Sean G un grupo de orden n, V un espacio vectorial de dimensién n,
(bt)teG una base de V.
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Subclase de representaciones: representaciones regulares

Sean G un grupo de orden n, V un espacio vectorial de dimensién n,

(bt)teG una base de V.

Se define p: G — GL(V),

p(g) (Z atbt> = Z Qbgt.

teG teG
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Subclase de representaciones: representaciones regulares

Sean G un grupo de orden n, V un espacio vectorial de dimensién n,
(bt)teG una base de V.

Se define p: G — GL(V),

p(g) (Z atbt> = Z Qbgt.

teG teG

En particular,

p(g)br = gt-
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Recordatorio: convertir G en permutaciones de G

Proposicién (construccién de Cayley)

Sea G un grupo. Para cada g en G, definimos L,: G — G,

Lg(t) = gt.
Entonces,
@ para cada g en G, L, es una biyeccién, es decir, Ly € Sym(G);
@ la correspondencia g — Lg es inyectiva;

o {Lg: g€ G} es un subgrupo de G.

Demostracién: ejercicio.
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Otra férmula explicita para una representacion regular

Proposicién
Sea p: G — GL(V) una representacién regular:

r(g) (Z Oétbt> = Z atbgt.
teG teG
Entonces, para cada g en G,

p(g) <Z atbt> = Z Qg-15bs.

teG seG
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Otra férmula explicita para una representacion regular

Proposicién

Sea p: G — GL(V) una representacion regular:

p(g) (Z atbt> = Z aitbgt.

teG teG

Entonces, para cada g en G,

p(g) <Z atbt> = Z Qg-15bs.

teG seG

Demostracién: usamos el cambio de variable s = gt.

Como hemos recordado, la correspondencia t — gt es biyectiva.
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Ejemplo

G ={e, a,b,c},

con la siguiente regla de multiplicacién:

Sea V un espacio vectorial complejo de dimensién 4.

Elegimos una base de V' y la indexamos con elementos de G:
U67 Uaa ubu uC'
Sea p: G — GL(V) la representacién regular correspondiente. Entonces, por ejemplo,

p(a) (ele + aaUy + apup + eclic) = Qeliy + Qale + Qplc + CicUp.
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Vamos a ver una forma matricial de representaciones regulares.

Necesitamos repasar el concepto de matrices de permutacion.

19/41



Matrices de permutacién

Dada una permutacién o en S, le asociamos la matriz de permutacién :

n

Pg = {51-’0(;()}]71(:1.
Notamos que
j=0a(k) = o () = k.

Por lo tanto,

n

P, = [50*1(1)7"}]*:1'
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Matrices de permutacion, ejemplo

Ejemplo:
0 0 0 1 O]
1 23 45 00001
c=(3,5412)=1|, L L | 1|, P,=11 0000
35412 00100
01000
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Matrices de permutacién y vectores de la base candnica

PU = pj’a(k)};k—l.

Proposicién
SioceS,yqed{l,...,n}, entonces

Po'eq = eo(q).

Demostracion.

(Poeq); = Z(P )jk(eq)k = Z o(k)0a.k = Gj.a(q) = (€s(q));-

k=1
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El producto de dos matrices de permutacion

Proposicién

Si o, 7 € S,, entonces
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El producto de dos matrices de permutacion

Proposicion
Si o, 7 € S,, entonces

P,P, = P,,.

Demostracion. Para cada g en {1,...,n},

PoPreq = Poer(q) = €(r(q)) = &or)(a) = FPoreq:

Por lo tanto, la g-ésima columna de P, P, coincide con la g-ésima columna de P,.

Como q es arbitrario, concluimos que estas dos matrices son iguales.
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El producto de dos matrices de permutacion

Proposicion
Sio, 7 € S,, entonces

P,P, = P,,.

Demostracion. Para cada g en {1,...,n},

PoPreq = Poer(q) = €(r(q)) = &or)(a) = FPoreq:

Por lo tanto, la g-ésima columna de P, P, coincide con la g-ésima columna de P,.

Como q es arbitrario, concluimos que estas dos matrices son iguales.

Ejercicio: escribir una demostracién directa, trabajando con (PyP;); k.
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Las matrices de permutacién y los vectores generales

Proposicién
Sioc e S,y xeC", entonces

PO-X = [Xo.—1(j)];l:1.
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Las matrices de permutacién y los vectores generales

Proposicién
Sioc e S,y xeC", entonces

PUX = [Xa_l(j)];zl‘

Demostracion.

n

(Pox)j = Y (Po)jkxk = Y Oo1() Xk = Xo-1(j)-
k=1 k=1
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Ejemplo: el producto de una matriz de permutacién por un vector

).

Sean n =5, x € C?,

<12345
O‘:

51 2 4

En este caso,

Por ejemplo, (Pyx)3 = x5 = X,-1(3)-

= O O O O

3

o O O o =

O O O —~ O

o = O O O

o O = O O

X2
X3
X4

X5

1 2 3 45
2 35 41

X2
X3
X5
X4

X1
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Representaciones regulares matriciales

Sea G un subgrupo de S,,.

Definimos p: G — GL,(C),

De manera equivalente, podemos poner V = C",

p(g)x = [Xg—l(k)] Z:l'

Por las propiedades de matrices de permutacién,

p(g)e = eg(j).
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Ejemplo (pasamos de un grupo finito a un subgrupo de S,)

Otra vez consideramos G = {e, a, b, c},

con la siguiente regla de multiplicacién:

Numeramos los elementos de G en el siguiente orden: e, a, b, c.

Usando la construccién de Cayley, convertimos G en el siguiente subgrupo de S4:

1 2 3 4 123 4 123 4 1
e= [+ L L L] a= L L L b=L L L] =)L
12 3 4 2 143 3412 4

w <— N

N <— W

N

=4
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Ejemplo, continuacién (representacion matricial regular de G)

Identificamos G con el siguiente subgrupo de 5;:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
e= , a= , b= , €= .

(1234) (2143) (3412) <4321>
Definimos p: G — GL4(C),

p(g) = Pg.

Por ejemplo,

p(b) = Pp=P3a12=

O = O O
= O O O
o O o =
O O = O
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9 Subespacios invariantes y subrepresentaciones
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Subespacio invariante (estable) de una representacion

Sea p: G — GL(V) una representacién y sea W un subespacio de V.

Se dice que W es un subespacio invariante o estable respecto p, si

Vg e G Yw e W p(g)w e W.
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Subespacio invariante (estable) de una representacion

Sea p: G — GL(V) una representacién y sea W un subespacio de V.

Se dice que W es un subespacio invariante o estable respecto p, si

Vg e G Yw e W p(g)w e W.

También se dice que W es un p-subespacio de V (o G-subespacio de V).
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Subrepresentacion

Suponemos que p: G — GL(V) es una representacion

y W es un subespacio de V invariante respecto a W.
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Subrepresentacion

Suponemos que p: G — GL(V) es una representacion

y W es un subespacio de V invariante respecto a W.

Para cada g en G, definimos p"(g): W — W,

(

p"(g)v = p(g)v.

En otras palabras, p"(g) = p(g)|\V. Estamos restringiendo el dominio y el codominio.

Es facil ver que
p"(g)p" (h) = p" (gh)
y que p%(g) € GL(W).
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Subrepresentacién

Suponemos que p: G — GL(V) es una representacion

y W es un subespacio de V invariante respecto a W.

Para cada g en G, definimos p"(g): W — W,

p"(g)v = plg)v.

En otras palabras, p"(g) = p(g)|\V. Estamos restringiendo el dominio y el codominio.

Es facil ver que
p"(g)p" (h) = p" (gh)
y que p%(g) € GL(W).

Concluimos que p': G — GL(W) es una representacion.
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Subrepresentacion

Suponemos que p: G — GL(V/) es una representacion

y W es un subespacio de V invariante respecto a W.

Definimos p"V': G — GL(W),

Se dice que p"V es una subrepresentacién de p.
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Ejemplo

Sean G un grupo de orden n, V un espacio vectorial de dimensién n,
(bt)tec una base de V.

Consideramos la representacion regular:

p(g)bt = bgt.
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Ejemplo

Sean G un grupo de orden n, V un espacio vectorial de dimensién n,
(bt)tec una base de V.

Consideramos la representacion regular:

p(g)be = bgt.

Pongamos

Es facil ver que p(g)u = u para cada g en G.
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Ejemplo

Sean G un grupo de orden n, V un espacio vectorial de dimensién n,
(bt)tec una base de V.

Consideramos la representacion regular:

p(g)be = bgt.

Pongamos

Es facil ver que p(g)u = u para cada g en G.

Por lo tanto, W es un subespacio invariante. En este ejemplo, p" es la representacién trivial.
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La suma directa de dos representaciones

Sean G un grupo, Vi y V> espacios vectoriales,
p1: G — GL(V4) y p2: G — GL(V2) representaciones.

Denotamos por Vi & V5 la suma directa de Vi y V5.

La suma directa de representaciones pi1 y p2 es

p1®p2: G = V1D Vo,

(1 @ p2)(x,y) = (p1(x), p2(¥))-

Ejercicio: verificar que p; ® p2 es una representacién.
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Idea de descomposicion de una representacion en una suma directa

Supongamos que p: G — GL(V/) es una representacién

y Wi, W5 son dos subespacios p-invariantes tales que
V =W+ W,

es decir,

V=W + W, WiNn W, = {0\/}

En este caso, V se identifica con la suma directa W; & W5,
y p se idenficia con la suma directa p""1 @ p*V2.

Ejercicio: verificar estas afirmaciones.
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Teorema de Maschke para representaciones lineales de grupos finitos

y espacios vectoriales de dimension finita

Teorema
Sea G un grupo finito, V' un espacio vectorial complejo de dimensién finita,
p: G — GL(V) una representacién y W un p-subespacio de V.

Entonces, existe un p-subespacio U de V tal que

V=W+4U.

Corolario: si W es un p-subespacio de V tal que 0 < dim(W) < dim(V),
entonces podemos descomponer p en representaciones de grado menor.
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Representaciones irreducibles

Una representacion p: G — GL(V) se llama irreducible
si en V no existe subespacio p-invariante W tal que W # {0y} y W # V.
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@ Morfismos entre representaciones
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Mapeos entre representaciones

Sean p: G — GL(V) y 0: G — GL(W) representaciones del grupo G.

Un mapeo o morfismo entre p y o es una transformacién lineal T: V — W tal que

Vge G  Tp(g)=o0(g)T.

% LA W
r(g) o(g)
% T w
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El centralizador de una representacion

Sea p: G — GL(V) una representacion.

El centralizador o conmutante de p se define como el conjunto de todos los operadores
lineales T: V — V que conmutan con p(g) para cada g en G:

C(p) 2={T€£(V): VgeG Tp(g)zp(g)T}.
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Lema de Schur

El “Lema de Schur” consiste de los siguientes dos teoremas importantes.

Teorema (lema de Schur para homomorfismos de representaciones irreducibles)
Sean p: G — GL(V) y 0: G — GL(W) representaciones irreducibles
y sea T un homomorfismo entre p y o.

Entonces, T es un isomorfismo o T es cero.

Teorema (lema de Schur para automorfismos de representaciones irreducibles)
Si p: G — GL(V) es una representacién irreducible,

entonces C(p) consiste solamente de los operadores escalares:

C(p) = {M: AecC).
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