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(un tema de la teoŕıa de representaciones de grupos)

Egor Maximenko, con ayuda de Victor Hugo Hernandez Macias
https://esfm.egormaximenko.com

Instituto Politécnico Nacional
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Objetivos de este tema

introducir el concepto de representación lineal;

conocer una clase de ejemplos: representaciones matriciales regulares;

introducir el concepto de subespacio invariante;

introducir el concepto de subrepresentación.

introducir el concepto de mapeo G-lineal;
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Prerrequisitos para este tema

conceptos básicos de álgebra lineal;

conceptos básicos de la teoŕıa de grupos;

optativo: teoŕıa de módulos.

Para estudiar representaciones unitarias fuertemente continuas
de grupos localmente compactos topológicos en espacios de Hilbert,
también se necesitan conceptos de topoloǵıa y de análisis funcional.

3 / 41



Prerrequisitos para este tema

conceptos básicos de álgebra lineal;
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Representaciones lineales finito-dimensionales de grupos finitos

En este tema, trabajamos solamente con grupos finitos
y solamente con espacios vectoriales complejos de dimensión finita.

Dado un espacio vectorial V , denotamos por GL(V ) al grupo de sus automorfismos
(isomorfismos V → V ).

Una representación lineal de un grupo G sobre un espacio vectorial V
es un homomorfismo ρ : G → GL(V ).

Vamos a trabajar solamente con representaciones lineales,
por eso decimos simplemente representación .

Si dim(V ) = n, se dice que n es el grado de la representación ρ.
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Una subclase de representaciones:
representaciones matriciales

Para V = Cn, el grupo GL(V ) se identifica con GLn(C).
En otras palabras, los operadores lineales invertibles V → V
se identifican con matrices invertibles de clase Mn(C).

Una representación matricial de G de grado n es un homeomorfismo ρ : G → GLn(C).
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Ejemplo: representación de Zn como matrices de rotación

G = Zn = Z/(nZ), V = C2,

ρ(k + nZ) :=

cos 2kπ
n − sin 2kπ

n

sin 2kπ
n cos 2kπ

n

 .

Se puede ver que la definición es consistente:
si j − k ∈ nZ, entonces j y k dan la misma matriz.

Ejercicio: demostrar la propiedad ρ(a + b) = ρ(a)ρ(b).
Es un caso particular de la regla de multiplicación de matrices de rotación.
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Ejemplo: representación de Zn como ráıces de la unidad

ε0
6

ε1
6ε2

6

ε3
6

ε4
6 ε5

6

Re

Im
Sean n ∈ N, G = Zn = Z/(nZ),
V = C1,

εn := e
2π i

n .

Definimos φ : Zn → GL1(C),

φ(k + nZ) := εk
n.

Ejercicio: la definición es consistente.
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Ejemplo: representación trivial (principal)

Sea G un grupo y sea V un espacio vectorial.

Denotamos por I al operador identidad V → V :

Iv := v (v ∈ V ).

Definimos τ : G → GL(V ),
τ(g) := I (g ∈ G).
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Observación: pueden haber varias representaciones de G sobre V

Por ejemplo, si G = Z3 y V = C2, las siguientes dos representaciones son diferentes:

ρ : G → GL(V ),

ρ(k + 3Z) :=

cos 2kπ
3 − sin 2kπ

3

sin 2kπ
3 cos 2kπ

3

 ,

τ : G → GL(V ),

ρ(k + 3Z) := I =
[
1 0
0 1

]
.

Sin embargo, en muchos textos sobre la teoŕıa de representaciones
es común omitir ρ y solamente mencionar G y V .
Por ejemplo, es común usar la notación gv en vez de ρ(g)v .

13 / 41



1 Definición: representación lineal

2 Representaciones regulares

3 Subespacios invariantes y subrepresentaciones

4 Morfismos entre representaciones

14 / 41



Subclase de representaciones: representaciones regulares

Sean G un grupo de orden n, V un espacio vectorial de dimensión n,
(bt)t∈G una base de V .

Se define ρ : G → GL(V ),

ρ(g)
(∑

t∈G
αtbt

)
:=
∑
t∈G

αtbgt .

En particular,

ρ(g)bt = bgt .
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Recordatorio: convertir G en permutaciones de G

Proposición (construcción de Cayley)
Sea G un grupo. Para cada g en G , definimos Lg : G → G ,

Lg(t) := gt.

Entonces,

para cada g en G , Lg es una biyección, es decir, Lg ∈ Sym(G);

la correspondencia g 7→ Lg es inyectiva;

{Lg : g ∈ G} es un subgrupo de G .

Demostración: ejercicio.
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Otra fórmula expĺıcita para una representación regular

Proposición
Sea ρ : G → GL(V ) una representación regular:

ρ(g)
(∑

t∈G
αtbt

)
:=
∑
t∈G

αtbgt .

Entonces, para cada g en G ,

ρ(g)
(∑

t∈G
αtbt

)
=
∑
s∈G

αg−1sbs .

Demostración: usamos el cambio de variable s = gt.
Como hemos recordado, la correspondencia t 7→ gt es biyectiva.
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Ejemplo

G = {e, a, b, c},
con la siguiente regla de multiplicación:

e a b c
a e c b
b c e a
c b a e

Sea V un espacio vectorial complejo de dimensión 4.
Elegimos una base de V y la indexamos con elementos de G :

ue , ua, ub, uc .

Sea ρ : G → GL(V ) la representación regular correspondiente. Entonces, por ejemplo,

ρ(a)
(
αeue + αaua + αbub + αcuc

)
= αeua + αaue + αbuc + αcub.
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Vamos a ver una forma matricial de representaciones regulares.

Necesitamos repasar el concepto de matrices de permutación.
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Matrices de permutación

Dada una permutación σ en Sn, le asociamos la matriz de permutación :

Pσ :=
[
δj,σ(k)

]n
j,k=1

.

Notamos que
j = σ(k) ⇐⇒ σ−1(j) = k.

Por lo tanto,
Pσ =

[
δσ−1(j),k

]n
j,k=1

.
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Matrices de permutación, ejemplo

Pσ =
[
δj,σ(k)

]n
j,k=1

=
[
δσ−1(j),k

]n
j,k=1

.

Ejemplo:

σ = (3, 5, 4, 1, 2) =


1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 5 4 1 2

 , Pσ =



0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0


.
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Matrices de permutación y vectores de la base canónica

Pσ :=
[
δj,σ(k)

]n
j,k=1

.

Proposición
Si σ ∈ Sn y q ∈ {1, . . . , n}, entonces

Pσeq = eσ(q).

Demostración.

(Pσeq)j =
n∑

k=1
(Pσ)j,k(eq)k =

n∑
k=1

δj,σ(k)δq,k = δj,σ(q) = (eσ(q))j .
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El producto de dos matrices de permutación

Proposición
Si σ, τ ∈ Sn, entonces

PσPτ = Pστ .

Demostración. Para cada q en {1, . . . , n},

PσPτ eq = Pσeτ(q) = eσ(τ(q)) = e(στ)(q) = Pστ eq.

Por lo tanto, la q-ésima columna de PσPτ coincide con la q-ésima columna de Pστ .
Como q es arbitrario, concluimos que estas dos matrices son iguales.

Ejercicio: escribir una demostración directa, trabajando con (PσPτ )j,k .
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Las matrices de permutación y los vectores generales

Proposición
Si σ ∈ Sn y x ∈ Cn, entonces

Pσx =
[
xσ−1(j)

]n
j=1.

Demostración.
(Pσx)j =

n∑
k=1

(Pσ)j,kxk =
n∑

k=1
δσ−1(j),kxk = xσ−1(j).
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Ejemplo: el producto de una matriz de permutación por un vector

Sean n = 5, x ∈ C5,

σ =
(

1 2 3 4 5
5 1 2 4 3

)
, σ−1 =

(
1 2 3 4 5
2 3 5 4 1

)
.

En este caso,

Pσx =



0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0





x1

x2

x3

x4

x5


=



x2

x3

x5

x4

x1


.

Por ejemplo, (Pσx)3 = x5 = xσ−1(3).
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Representaciones regulares matriciales

Sea G un subgrupo de Sn.

Definimos ρ : G → GLn(C),
ρ(g) := Pg .

De manera equivalente, podemos poner V := Cn,

ρ(g)x :=
[
xg−1(k)

]n
k=1.

Por las propiedades de matrices de permutación,

ρ(g)ej = eg(j).
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Ejemplo (pasamos de un grupo finito a un subgrupo de Sn)

Otra vez consideramos G = {e, a, b, c},
con la siguiente regla de multiplicación:

e a b c
a e c b
b c e a
c b a e

Numeramos los elementos de G en el siguiente orden: e, a, b, c.

Usando la construcción de Cayley, convertimos G en el siguiente subgrupo de S4:

e =


1 2 3 4
↓ ↓ ↓ ↓
1 2 3 4

 , a =


1 2 3 4
↓ ↓ ↓ ↓
2 1 4 3

 , b =


1 2 3 4
↓ ↓ ↓ ↓
3 4 1 2

 , c =


1 2 3 4
↓ ↓ ↓ ↓
4 3 2 1

 .
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Ejemplo, continuación (representación matricial regular de G)
Identificamos G con el siguiente subgrupo de S4:

e =
(

1 2 3 4
1 2 3 4

)
, a =

(
1 2 3 4
2 1 4 3

)
, b =

(
1 2 3 4
3 4 1 2

)
, c =

(
1 2 3 4
4 3 2 1

)
.

Definimos ρ : G → GL4(C),
ρ(g) := Pg .

Por ejemplo,

ρ(b) = Pb = P3,4,1,2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
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Subespacio invariante (estable) de una representación

Sea ρ : G → GL(V ) una representación y sea W un subespacio de V .

Se dice que W es un subespacio invariante o estable respecto ρ, si

∀g ∈ G ∀w ∈ W ρ(g)w ∈ W .

También se dice que W es un ρ-subespacio de V (o G-subespacio de V ).
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Subrepresentación
Suponemos que ρ : G → GL(V ) es una representación
y W es un subespacio de V invariante respecto a W .

Para cada g en G , definimos ρW (g) : W → W ,

ρW (g)v := ρ(g)v .

En otras palabras, ρW (g) = ρ(g)|WW . Estamos restringiendo el dominio y el codominio.

Es fácil ver que
ρW (g)ρW (h) = ρW (gh)

y que ρW (g) ∈ GL(W ).

Concluimos que ρW : G → GL(W ) es una representación.
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Es fácil ver que
ρW (g)ρW (h) = ρW (gh)

y que ρW (g) ∈ GL(W ).

Concluimos que ρW : G → GL(W ) es una representación.

31 / 41



Subrepresentación

Suponemos que ρ : G → GL(V ) es una representación
y W es un subespacio de V invariante respecto a W .

Definimos ρW : G → GL(W ),
ρW (g)v := ρ(g)v .

Se dice que ρW es una subrepresentación de ρ.

32 / 41



Ejemplo

Sean G un grupo de orden n, V un espacio vectorial de dimensión n,
(bt)t∈G una base de V .

Consideramos la representación regular:

ρ(g)bt := bgt .

Pongamos
u :=

∑
t∈G

bt , W := Cu.

Es fácil ver que ρ(g)u = u para cada g en G .

Por lo tanto, W es un subespacio invariante. En este ejemplo, ρW es la representación trivial.
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La suma directa de dos representaciones

Sean G un grupo, V1 y V2 espacios vectoriales,
ρ1 : G → GL(V1) y ρ2 : G → GL(V2) representaciones.

Denotamos por V1 ⊕ V2 la suma directa de V1 y V2.

La suma directa de representaciones ρ1 y ρ2 es

ρ1 ⊕ ρ2 : G → V1 ⊕ V2,

(ρ1 ⊕ ρ2)(x , y) := (ρ1(x), ρ2(y)).

Ejercicio: verificar que ρ1 ⊕ ρ2 es una representación.
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Idea de descomposición de una representación en una suma directa

Supongamos que ρ : G → GL(V ) es una representación
y W1, W2 son dos subespacios ρ-invariantes tales que

V = W1 ∔ W2,

es decir,
V = W1 + W2, W1 ∩ W2 = {0V }.

En este caso, V se identifica con la suma directa W1 ⊕ W2,
y ρ se idenficia con la suma directa ρW1 ⊕ ρW2 .

Ejercicio: verificar estas afirmaciones.
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Teorema de Maschke para representaciones lineales de grupos finitos
y espacios vectoriales de dimensión finita

Teorema
Sea G un grupo finito, V un espacio vectorial complejo de dimensión finita,
ρ : G → GL(V ) una representación y W un ρ-subespacio de V .

Entonces, existe un ρ-subespacio U de V tal que

V = W ∔ U.

Corolario: si W es un ρ-subespacio de V tal que 0 < dim(W ) < dim(V ),
entonces podemos descomponer ρ en representaciones de grado menor.
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Representaciones irreducibles

Una representación ρ : G → GL(V ) se llama irreducible
si en V no existe subespacio ρ-invariante W tal que W ̸= {0V } y W ̸= V .
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Mapeos entre representaciones

Sean ρ : G → GL(V ) y σ : G → GL(W ) representaciones del grupo G .
Un mapeo o morfismo entre ρ y σ es una transformación lineal T : V → W tal que

∀g ∈ G Tρ(g) = σ(g)T .

Otros términos: T es un mapeo G-lineal, T entrelaza ρ y σ.

V W

V W

T

T

ρ(g) σ(g)
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El centralizador de una representación

Sea ρ : G → GL(V ) una representación.

El centralizador o conmutante de ρ se define como el conjunto de todos los operadores
lineales T : V → V que conmutan con ρ(g) para cada g en G :

C(ρ) :=
{

T ∈ L(V ) : ∀g ∈ G Tρ(g) = ρ(g)T
}

.
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Lema de Schur
El “Lema de Schur” consiste de los siguientes dos teoremas importantes.

Teorema (lema de Schur para homomorfismos de representaciones irreducibles)
Sean ρ : G → GL(V ) y σ : G → GL(W ) representaciones irreducibles
y sea T un homomorfismo entre ρ y σ.

Entonces, T es un isomorfismo o T es cero.

Teorema (lema de Schur para automorfismos de representaciones irreducibles)
Si ρ : G → GL(V ) es una representación irreducible,
entonces C(ρ) consiste solamente de los operadores escalares:

C(ρ) =
{
λI : λ ∈ C

}
.
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