Métodos de la secante y de la regla falsa

- 1. Idea del método de la secante. Las aproximaciones a la raíz de la función f se construyen sucesivamente (paso a paso), empezando con dos aproximaciones iniciales x_{-1} y x_0 . En el paso n, para construir x_n , se usan dos aproximaciones anteriores, x_{n-1} y x_{n-2} . Se considera la linea recta, que pasa por los puntes $(x_{n-1}, f(x_{n-1}) \text{ y } (x_{n-2}, f(x_{n-2}))$, y el punto x_n se calcula como el punto de la intersección de esta recta con el eje de abscisas.
- **2.** Sea f una función definida en puntos a y b. Calcular el punto de la intersección del eje de abscisas con la recta que pasa por (a, u) y (b, v).
- 3. Algoritmo (método de la secante).

```
Entrada: f, a, b, xtol, ytol, Nmax
fa := f(a); fb := f(b);
c := b - fb * (b - a) / (fb - fa);
fc := f(c);
n := 1;
Mientras (|b - c| >= xtol) y (|fc| >= ytol) y (n <= Nmax):
a := b; fa := fb;
b := c; fb := fc;
c := b - fb * (b - a) / (fb - fa);
fc := f(c);
n := n + 1;
Salida: c</pre>
```

- **4. Idea del método de la posición falsa.** En el método de la posición falsa se supone desde el inicio que $f(x_{-1})$ y $f(x_0)$ tienen signos diferentes. En el paso número n se calcula x_n usando x_{n-1} y x_{n-2} , como en el método de secante. Después de esto, si $f(x_n)$ y $f(x_{n-1})$ tienen el mismo signo, el valor de x_{n-2} se escribe en x_{n-1} . Esto garantiza que siempre $f(x_n)$ y $f(x_{n-1})$ tienen signos diferentes.
- **5. Tarea.** Escribir versiones recurrentes de los métodos de la secante y de la posición falsa.