Permutaciones

Problemas teóricos para examen

- 1. Escriba la definición de permutación.
- 2. Conjunto S_n y número de elementos de S_n . Denotemos por S_n al conjunto de todas las permutaciones del conjunto $\{1, \ldots, n\}$. Explique por qué $|S_n| = n!$.

Composición de permutaciones

- 3. Escriba la definición del producto de dos permutaciones $\varphi, \psi \in S_n$.
- 4. Demuestre que la multiplicación de permutaciones es asociativa.
- 5. Definición de la permutación identidad.

6. Enuncie y demuestre las propiedades principales de la permutación identidad:

$$\forall \varphi \in S_n, \qquad \varphi e = \underbrace{\hspace{1cm}}_?;$$
 $\forall \varphi \in S_n, \qquad e\varphi = \underbrace{\hspace{1cm}}_?.$

7. Tabla de multiplicación de las simetrías del triángulo regular. Para los elementos del conjunto S_3 usemos las siguientes notaciones:

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad r = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \qquad r^2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$
$$h_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \qquad h_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad h_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

Permutaciones, problemas teóricos, página 1 de 10

Primero muestre que el producto rr verdaderamente coincide con la permutación que denotamos por r^2 . Llene la tabla de multiplicación en S_3 . En la intersección del renglón φ y de columna ψ se escribe el producto $\varphi\psi$.

e	r	r^2	h_1	h_2	h_3
r					
r^2					
h_1					
h_2					
h_3					

Observando esta tabla encuentre algunas leyes interesantes.

8. Para cualquier permutación existe una permutación inversa. Explique por qué para cualquier $\varphi \in S_n$ existe una $\psi \in S_n$ tal que $\varphi \psi = e$ y $\psi \varphi = e$. Explique con ejemplos cómo construir ψ .

9. Unicidad de la permutación inversa. Supongamos que $\varphi, \alpha, \beta \in S_n$,

$$\varphi \alpha = e, \qquad \alpha \varphi = e, \qquad \varphi \beta = e, \qquad \beta \varphi = e.$$

Demuestre que $\alpha = \beta$.

10. Definición de la permutación inversa. En los dos problemas anteriores se demuestra que para cualquier permutación $\varphi \in S_n$ existe una única permutación $\psi \in S_n$ tal que $\varphi \psi = e$ y $\psi \varphi = e$. Esta permutación se llama la *inversa* de φ y se denota por φ^{-1} .

11. Propiedades principales de la permutación inversa. Demuestre las siguientes propiedades:

$$e^{-1} = e$$
.

- Para cualesquiera $\varphi, \psi \in S_n, (\varphi \psi)^{-1} = \psi^{-1} \varphi^{-1}$.
- Para cualesquiera $\varphi \in S_n$, $(\varphi^{-1})^{-1} = \varphi$.

12. Sea $\psi \in S_n$. Demuestre que la función $f: S_n \to S_n$ definida mediante la siguiente regla es una biyección:

$$\forall \varphi \in S_n \qquad f(\varphi) = \varphi \psi.$$

13. Sea $\psi \in S_n$. Demuestre que la función $f: S_n \to S_n$ definida mediante la siguiente regla es una biyección:

$$\forall \varphi \in S_n \qquad f(\varphi) = \psi \varphi.$$

- 14. Para cada una de las permutaciones $\varphi \in S_3$ escriba la permutación φ^{-1} . Observe que las permutaciones φ^{-1} no se repiten y forman el conjunto S_3 .
- **15.** Demuestre que la función $\Xi \colon S_n \to S_n$ definida mediante la siguiente regla es una biyección:

$$\forall \varphi \in S_n \qquad \Xi(\varphi) = \varphi^{-1}.$$

Transposiciones

- 16. Definición de transposición. Sean $p, q \in \{1, ..., n\}$, $p \neq q$. Denotemos por $\tau_{p,q}$ a la permutación que intercambia los elementos $p \neq q$ y queda fijos todos los demás elementos. Se dice que $\tau_{p,q}$ es la transposición de $p \neq q$. Escriba la regla de correspondencia de $\tau_{p,q}$ de manera formal.
- 17. La inversa de una transposición. Sean $p,q\in\{1,\ldots,n\},\ p\neq q$. Muestre que $\tau_{p,q}\tau_{p,q}=e,$ así que $\tau_{p,q}^{-1}=\tau_{p,q}.$
- 18. Multplicación por una transposición por la derecha. Sea

$$\varphi = \left(\begin{array}{cccc} 1 & 2 & \dots & n-1 & n \\ a_1 & a_2 & \dots & a_{n-1} & a_n \end{array}\right),$$

sean $p, q \in \{1, ..., n\}, p \neq q$ y sea $\psi = \varphi \tau_{p,q}$. Explique cómo obtener la lista $\psi(1), ..., \psi(n)$ de la lista $a_1, ..., a_n$.

19. Multiplicación por una transposición por la izquierda. Sea

$$\varphi = \left(\begin{array}{cccc} 1 & 2 & \dots & n-1 & n \\ a_1 & a_2 & \dots & a_{n-1} & a_n \end{array}\right),$$

sean $p, q \in \{1, \dots, n\}, p \neq q$ y sea $\psi = \tau_{p,q} \varphi$. Explique cómo obtener la lista $\psi(1), \dots, \psi(n)$ de la lista a_1, \dots, a_n .

Ciclos

- **20.** Escriba de manera formal la regla de correspondencia del ciclo $c_n(a_1, \ldots, a_r)$.
- **21.** El ciclo $c_8(4,7,5,6,1)$ también se puede escribir como $c_8(7,5,6,1,4)$ y de tres otras maneras (usando la misma notación cíclica). ¿De cuántas maneras se puede escribir (en notación cíclica) un ciclo de r elementos?.
- 22. Unión de dos ciclos que tienen un elemento en común. Enuncie y explique (al menos con un ejemplo) la fórmula para el siguiente producto:

$$c_n(a_1,\ldots,a_p) c_n(a_p,\ldots,a_q),$$

donde $a_1, \ldots, a_p, \ldots, a_q$ son algunos elementos de $\{1, \ldots, n\}$ diferentes a pares.

23. Corolario. Calcule el siguiente producto:

$$c_n(a_1, a_2) c_n(a_2, a_3) \cdots c_n(a_{p-2}, a_{p-1}) c_n(a_{p-1}, a_p),$$

donde a_1, a_2, \ldots, a_p son algunos elementos de $\{1, \ldots, n\}$ diferentes a pares.

24. Unión de un ciclo con una transposición que tiene un elemento del ciclo. Enuncie y explique (al menos con un ejemplo) la fórmula para el siguiente producto:

$$c_n(a_1,\ldots,a_p)\,c_n(a_p,a_{p+1}),$$

donde $a_1, \ldots, a_p, a_{p+1}$ son algunos elementos de $\{1, \ldots, n\}$ diferentes a pares.

25. Multiplicación de un ciclo por una transposición de dos elementos del ciclo. Enuncie y explique (al menos con un ejemplo) la fórmula para el siguiente producto:

$$c_n(a_1,\ldots,a_p,\ldots,a_q) c_n(a_p,a_q),$$

donde $a_1, \ldots, a_p, \ldots, a_q$ son algunos elementos de $\{1, \ldots, n\}$ diferentes a pares.

Descomposición de una permutación en un producto de ciclos disjuntos

26. Ciclos disjuntos conmutan. Sean $a_1, \ldots, a_p, b_1, \ldots, b_q$ algunos elementos del conjunto $\{1, \ldots, n\}$ diferentes a pares. Explique por qué se cumple la siguiente igualdad:

$$c_n(a_1, \ldots, a_p) c_n(b_1, \ldots, b_q) = c_n(b_1, \ldots, b_q) c_n(a_1, \ldots, a_p).$$

27. Explique a alguien cómo descomponer la siguiente permutación en un producto de ciclos disjuntos:

$$\varphi = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 8 & 7 & 5 & 3 & 6 & 4 \end{array}\right).$$

- 28. Muestre con un ejemplo que la descomposición de una permutación en un producto de ciclos disjuntos se puede escribir de varias maneras y explique en qué sentido dicha descomposición es única.
- **29.** Descomposición de un ciclo en un producto de transposiciones. Consideremos un ciclo de r elementos:

$$\varphi = c_n(a_1, a_2, \dots, a_r).$$

Muestre que este ciclo se puede escribir como un producto de r-1 transposiciones.

Decremento de una permutación

30. Definición (decremento o discriminante de una permutación). Sea φ una permutación. Denotemos por r_1, \ldots, r_s a las longitudes de los ciclos en la descomposición de φ en ciclos disjuntos. Entonces el siguiente número se llama el decremento o el discriminante de φ :

$$d(\varphi) := (r_1 - 1) + \dots + (r_s - 1).$$

Tomando en cuenta que $r_1 + \cdots + r_s = n$ podemos escribir $d(\varphi)$ como

$$d(\varphi) = n - s.$$

En la última fórmula s es la cantidad de los ciclos en la descomposición de φ , tomando en cuenta los ciclos triviales (ciclos de un elemento).

- 31. Teorema sobre la descomposición de una permutación en un producto de transposiciones. Demuestre que cualquier permutación $\varphi \in S_n$ se puede descomponer en un producto de $d(\varphi)$ transposiciones.
- 32. Teorema sobre el cambio del decremento de una permutación al multiplicarla por una transposición. Sea $\varphi \in S_n$ y sean $p, q \in \{1, ..., n\}$ con $p \neq q$. Entonces

$$d(\varphi \tau_{p,q}) = \begin{cases} d(\varphi) - 1, & \text{si } p \text{ y } q \text{ pertenecen a un ciclo en la descomposición de } \varphi; \\ d(\varphi) + 1, & \text{en otro caso.} \end{cases}$$

Muestre con ejemplos cómo funciona esta fórmula.

- **33.** Tarea adicional. Escriba demostraciones formales para ambos casos del teorema anterior.
- **34.** Corolario. Sea $\varphi \in S_n$ y sean $p, q \in \{1, \ldots, n\}$ con $p \neq q$. Entonces

$$(-1)^{\mathrm{d}(\varphi\tau_{p,q})} = -(-1)^{\mathrm{d}(\varphi)}.$$

35. Corolario. Sea $\varphi \in S_n$ y sean $p, q \in \{1, \ldots, n\}$ con $p \neq q$. Entonces

$$d(\varphi \tau_{p,q}) \le d(\varphi) + 1.$$

36. Proposición (sobre el decremento del producto de k transposiciones). Sean $\alpha_1, \ldots, \alpha_k$ algunas transposiciones del conjunto $\{1, \ldots, n\}$. Demuestre que

$$d(\alpha_1 \cdots \alpha_k) \leq k$$
.

- **37.** Sea $\varphi \in S_n$. Explique por qué φ no se puede descomponer en un producto de k transposiciones con $k < d(\varphi)$.
- **38.** Sea $\varphi \in S_n$ una permutación que se puede escribir como un producto de k transposiciones. Demuestre que φ se puede escribir también como un producto de k+2 transposiciones.
- **39.** Sea $\varphi \in S_n$. Demuestre que $d(\varphi)$ es el número mínimo de factores en las descomposiciones de φ en ciclos disjuntos.
- 40. Ejemplo. Calcule el decremento de la siguiente permutación:

$$\varphi = \left(\begin{array}{cccc} 1 & 2 & \dots & n-1 & n \\ n & n-1 & \dots & 2 & 1 \end{array}\right).$$

Indicación: considere cuatro casos $n=4m,\,n=4m+1,\,n=4m+2,\,n=4m+3;$ en cada caso saque la descomposición de φ en ciclos disjuntos.

Signo de una permutación

41. Definición (el signo de una permutación). Sea $\varphi \in S_n$. Entonces

$$\operatorname{sgn}(\varphi) := (-1)^{\operatorname{d}(\varphi)}.$$

- **42.** Calcule el signo de e, el signo de $\tau_{i,j}$, el signo de $c_n(a_1,\ldots,a_r)$.
- **43.** Calcule el signo de la permutación $\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ n & n-1 & \dots & 2 & 1 \end{pmatrix}$.
- 44. Proposición (cambio del signo de una permutación al multiplicarla por una transposición). Sea $\varphi \in S_n$ y sean $p, q \in \{1, \dots, n\}$ tales que $p \neq q$. Explique por qué

$$\operatorname{sgn}(\varphi \tau_{p,q}) = -\operatorname{sgn}(\varphi).$$

- 45. Proposición (sobre el signo de una permutación representada como un producto de transposiciones). Sea $\varphi \in S_n$ y sean $\alpha_1, \ldots, \alpha_k$ algunas transposiciones tales que $\varphi = \alpha_1 \cdots \alpha_k$. Demuestre que $\operatorname{sgn}(\varphi) = (-1)^k$.
- 46. Teorema sobre el signo del producto de dos permutaciones. Sean $\varphi, \psi \in S_n$. Demuestre que

$$\operatorname{sgn}(\varphi\psi) = \operatorname{sgn}(\varphi)\operatorname{sgn}(\psi).$$

47. Signo de la permutación inversa. Sea $\varphi \in S_n$. Demuestre que

$$\operatorname{sgn}(\varphi^{-1}) = \operatorname{sgn}(\varphi).$$

48. Ejemplo. Muestre que

$$\operatorname{sgn}\left(\begin{array}{cccc} 1 & 2 & \dots & n-1 & n \\ n & n-1 & \dots & 2 & 1 \end{array}\right) = (-1)^{\frac{n(n-1)}{2}}.$$

Indicación: use el resultado del Problema 40.

Subgrupo alternado

49. Notación A_n . Denotemos por A_n al conjunto de todas las permutaciones pares del conjunto $\{1, \ldots, n\}$:

$$A_n := \{ \varphi \in S_n \colon \operatorname{sgn}(\varphi) = 1 \}.$$

- **50.** Escriba todos los elementos de S_2 .
- **51.** Escriba todos los elementos de S_3 .
- **52.** Escriba todos los elementos de S_4 .
- 53. Las permutaciones pares forman un subgrupo de S_n . Muestre las siguientes propiedades de A_n :
 - 1. Si $\varphi, \psi \in A_n$, entonces $\varphi \psi \in A_n$.
 - $2. e \in A_n.$
 - 3. Si $\varphi \in A_n$, entonces $\varphi^{-1} \in A_n$.

Estas propiedades significan que A_n es un subgrupo de S_n . Este subgrupo se llama el subgrupo alternado. Otros terminos comunes son: subgrupo alternante, grupo alternado, grupo alternante.

54. Multiplicación de todas las permutaciones pares por una permutación impar. Sea $n \geq 2$ y sea $\psi \in S_n$ una permutación impar. Se considera el mapeo $\Lambda \colon A_n \to S_n$, definido mediante la regla

$$\Lambda(\varphi) := \varphi \psi \qquad \forall \varphi \in A_n.$$

Muestre que Λ es inyectivo y que su imagen es $S_n \setminus A_n$.

55. Número de elementos de A_n . Sea $n \geq 2$. Usando el problema anterior muestre que

$$|A_n| = \frac{n!}{2}.$$

Funciones simétricas y antisimétricas

- **56.** Dé un ejemplo de una función antisimétrica $f: \mathbb{R}^3 \to \mathbb{R}$ que no sea constante cero.
- 57. Definición (aplicación de una permutación a los argumentos de una función). Sea $f: X^n \to \mathbb{F}$ una función de n argumentos y sea $\varphi \in S_n$. Denotemos por φf a la función $X^n \to \mathbb{F}$ definida mediante la siguiente regla de correspondencia:

$$(\varphi f)(x_1, x_2, \dots, x_n) = f(x_{\varphi(1)}, x_{\varphi(2)}, \dots, x_{\varphi(n)}).$$

- 58. Aplicación de dos permutaciones a los argumentos de una función. Sea $f: X^n \to \mathbb{F}$ una función de n argumentos y sean $\varphi, \psi \in S_n$. Enuncie y demuestre una fórmula para $\varphi(\psi f)$.
- 59. Definición (función simétrica). Una función $f: X^n \to \mathbb{F}$ se llama simétrica si su valor no se cambia al intercambiar cualesquiera dos de sus argumentos. Escriba esta definición de manera formal usando la notación $\tau_{p,q}$.
- 60. Aplicación de una permutación a los argumentos de una función simétrica. Sea $f: X^n \to \mathbb{F}$ una función simétrica y sea $\varphi \in S_n$. Demuestre que

$$\psi f = f$$
.

61. Definición (función antisimétrica). Una función $f: X^n \to \mathbb{F}$ se llama antisimétrica si cambia el signo al intercambiar cualesquiera dos de sus argumentos:

$$\forall a_1, \dots, a_n \in X \quad \forall p, q \in \{1, \dots, n\} \text{ con } p < q,$$

$$f(a_1, \dots, a_{p-1}, a_q, a_{p+1}, \dots, a_{q-1}, a_p, a_{q+1}, \dots, a_n)$$

$$= -f(a_1, \dots, a_{p-1}, a_p, a_{p+1}, \dots, a_{q-1}, a_q, a_{q+1}, \dots, a_n).$$

Escriba esta definición de manera formal usando la notación $\tau_{p,q}$.

62. Teorema: aplicación de una permutación a los argumentos de una función antisimétrica. Sea $f: X^n \to \mathbb{F}$ una función antisimétrica y sea $\varphi \in S_n$. Demuestre que

$$\psi f = \operatorname{sgn}(\psi) f$$
.

- **63.** Sea $f: X^5 \to \mathbb{F}$ una función antisimétrica. Exprese $f(x_4, x_2, x_1, x_5, x_3)$ a través de $f(x_1, x_2, x_3, x_4, x_5)$.
- 64. Descomposición de una función real de dos argumentos en una suma de una función simétrica y una función antisimétrica. Sea $f: X^2 \to \mathbb{R}$ una función de dos argumentos. Demuestre que existe un único par de funciones (g,h) tales que $g: X^2 \to \mathbb{R}$, $h: X^2 \to \mathbb{R}$, f=g+h, g es simétrica y h es antisimétrica:

$$g(y,x) = g(x,y) \quad \forall x,y \in X; \qquad h(y,x) = -h(x,y) \quad \forall x,y \in X.$$