Valores y vectores propios

Tareas adicionales

Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social).

Estos problemas son más difíciles o más laboriosos que los problemas para el examen. Resolver completamente una subsección (un microtema) de esta lista ya es un gran reto y una pequeña investigación científica.

Coeficientes del polinomio característico

Aquí en todos los problemas se supone que A es una matriz cuadrada de orden n con entradas generales pertenecientes a un campo \mathbb{F} , es decir, $A \in \mathcal{M}_n(\mathbb{F})$.

Problemas auxiliares

1. Polinomio característico de una matriz de orden 2 con entradas generales. Calcule C_A , donde A es una matriz de orden 2 con entradas generales:

$$A = \left[\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array} \right].$$

- 2. Definición del determinante de una matriz (repaso). Recuerde la definición del determinante de una matriz cuadrada (en términos de permutaciones).
- 3. Entradas de la matriz $\lambda I_n A$ (repaso). Escriba una fórmula para la entrada (j,k) de la matriz $\lambda I_n A$. Use el símbolo de Kronecker.
- 4. Fórmula para un sumando del determinante de $\lambda I_n A$. Por la definición del determinante, el polinomio característico de una matriz A se puede escribir como una suma de n! sumandos, donde cada sumando $s(A, \lambda, \varphi)$ corresponde a una permutación φ del conjunto $\{1, \ldots, n\}$.

$$C_A(\lambda) = \det(\lambda I_n - A) = \sum_{\varphi \in S_n} s(A, \lambda, \varphi).$$

Escriba una fórmula explícita para $s(A, \lambda, \varphi)$. Muestre que $s(A, \lambda, \varphi)$ es un polinomio de grado $\leq n$.

5. Calcule el sumando $s(A, \lambda, e)$ correspondiente a la permutación identidad e.

Valores y vectores propios, tareas adicionales, página 1 de 9

6. Muestre que si $\varphi \in S_n$ y $\varphi \neq e$, entonces $s(A, \lambda, e)$ tiene no más de n-2 entradas de la diagonal principal de A y por lo tanto es un polinomio de grado $\leq n-2$.

Denotemos los coeficientes del polinomio característico C_A por c_0, \ldots, c_n :

$$C_A(\lambda) = c_n \lambda^n + c_{n-1} \lambda^{n-1} + \ldots + c_1 \lambda + c_0.$$

- 7. El polinomio característico es un polinomio mónico de grado n. Demuestre que C_A es un polinomio de grado n y que $c_n = 1$.
- 8. El término independiente del polinomio característico. Calcule c_0 .

Problemas principales

- 9. Menores principales. Dada una matriz $A \in \mathcal{M}_n(\mathbb{F})$ y un subconjunto J del conjunto $\{1,\ldots,n\}$, denotemos por $\Delta_J(A)$ al menor de A ubicado en la intersección de los renglones J y de las columnas J. Menores de estas forma (ubicadas en los mismos renglones y columnas) se llaman menores principales. Para una matriz general $A \in \mathcal{M}_n(\mathbb{F})$ escriba su menor principal $\Delta_{1,3}(A)$, es decir, su menor ubicado en la intersección de los renglons 1 y 3 con las columnas 1 y 3.
- 10. Coeficientes del polinomio característico de una matriz 3×3 . Encuentre una fórmula para los coeficientes del polinomio característico de una matriz general $A \in \mathcal{M}_3(\mathbb{F})$. Para escribir el coeficiente de λ^1 en una forma breve use la notación del problema anterior (menores principales). Piense cómo escribir los coeficientes de λ^3 , λ^2 y λ^0 en términos de menores principales.
- 11. Coeficiente de λ^{n-1} y su relación con la traza. Demuestre que $c_{n-1} = -\operatorname{tr}(A)$.
- 12. Adivine una fórmula general para los coeficientes del polinomio característico. Use el concepto de menores principales.
- 13. Tarea muy optativa. Encuentre algún libro dónde se demuestre la fórmula encontrada en el problema anterior.

Análisis del operador conmutador con una matriz fija de orden 2

Aquí suponemos que $A \in \mathcal{M}_2(\mathbb{C})$ es una matriz fija. Denotamos sus entradas por a, b, c, d y las consideramos como parámetros dados:

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].$$

Definimos a la función $T\colon \mathcal{M}_2(\mathbb{C}) \to \mathcal{M}_2(\mathbb{C})$ como

$$T(X) := AX - XA \qquad \forall X \in \mathcal{M}_2(\mathbb{C}).$$

Problemas auxiliares

- 14. Muestre que T es un operador lineal.
- 15. Halle la matriz asociada a T respecto a la base canónica de $\mathcal{M}_2(\mathbb{C})$:

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Problemas principales

- 16. Encuentre los valores propios de T (por supuesto, la respuesta debe ser en términos de a,b,c,d).
- 17. Dé los vectores propios de T.
- 18. Determine si T es diagonalizable.

Espectro del producto de dos operadores lineales en un espacio de dimensión finita no depende del orden de los factores

En los problemas de esta sección se supone que V es un espacio vectorial de dimensión finita y $T, U \in \mathcal{L}(V)$. Vamos a demostrar que $\operatorname{sp}(TU) = \operatorname{sp}(UT)$.

Empezamos con $\lambda = 0$:

19. Sean $T, U \in \mathcal{L}(V)$ tales que $0 \in \operatorname{sp}(TU)$. Demuestre que $0 \in \operatorname{sp}(UT)$.

Para resolver el caso principal, $\lambda \neq 0$, hay (por lo menos) dos caminos.

Primer camino (construir el operador inverso)

20. Sean T y U tales que el operador I - TU es invertible. Denotemos por R al operador inverso de I - TU:

$$R := (I - TU)^{-1}.$$

Simplifique los siguientes productos:

$$(I-TU)R$$
, TUR , $R(I-TU)$, RTU .

21. Sean T y U tales que el operador I-TU es invertible. Denotemos por R al operador inverso de I-TU:

$$R \coloneqq (I - TU)^{-1}.$$

De los operadores I, T, U y R construya un operador inverso al operador I-UT usando solamente las operaciones de adición, subtracción y producto. En particular, con esto tendrá demostrado que I-UT es invertible.

- **22.** Sea λ tal que $\lambda \notin \operatorname{sp}(TU)$ y $\lambda \neq 0$. Usando el resultado del problema anterior demuestre que $\lambda \notin \operatorname{sp}(UT)$.
- **23.** Sea $\lambda \in \operatorname{sp}(TU)$ tal que $\lambda \neq 0$. Usando el resultado del problema anterior demuestre que $\lambda \in \operatorname{sp}(UT)$.

Segundo camino (trabajar con valores y vectores propios)

24. Sea $\lambda \in \mathbb{F} \setminus \{0\}$ tal que λ es un valor propio de TU. Demuestre que λ es un valor propio e UT.

De los resultados de los problemas anteriores sigue inmediatamente el resultado principal:

25. Demuestre que $\operatorname{sp}(TU) = \operatorname{sp}(UT)$.

Espectro de una proyección no trivial

En los problemas de esta sección se supone que V es un espacio vectorial de dimensión finita sobre un campo \mathbb{F} .

Problemas auxiliares

- **26. Espectro de una proyección.** Sea $P \in \mathcal{L}(V)$ tal que $P^2 = P$. Demuestre que $\operatorname{sp}(P) \subseteq \{0,1\}$.
- 27. Espectro del operador cero. Sea P el operador cero: $P = \mathbf{0}_{V \to V}$. Demuestre que $P^2 = P$ y calcule $\operatorname{sp}(P)$.
- **28. Espectro del operador identidad.** Sea P el operador identidad: P = I. Demuestre que $P^2 = P$ y calcule sp(P).

Problema principal

29. Espectro de una proyección no trivial. Sea V un EV/\mathbb{F} , $\dim(V) < +\infty$, y sea $P \in \mathcal{L}(V)$ tal que $P^2 = P$, $P \neq I$, $P \neq \mathbf{0}$. Demuestre que $\operatorname{sp}(P) = \{0, 1\}$.

Potencias de una matriz cuadrada de orden dos

Problemas auxiliares

- **30. Teorema de Cayley–Hamilton (repaso).** Recuerde el enunciado del teorema de Cayley–Hamilton.
- **31.** Sean $A \in \mathcal{M}_n(\mathbb{C})$ y $f \in \mathcal{P}(\mathbb{C})$. Denotemos por q y r al cociente y al resto al dividir f entre C_A :

$$f = q C_A + r, \qquad \deg(r) < ???.$$

Establezca una relación entre f(A) y r(A).

32. Sean α, β dos números diferentes y sea $f \in \mathcal{P}(\mathbb{C})$. Encuentre los coeficientes λ, μ del resto al dividir f entre $(x - \alpha)(x - \beta)$:

$$f(x) = q(x)(x - \alpha)(x - \beta) + \xi x + \eta. \tag{1}$$

Sugerencia: a partir de (1) formar un sistema de dos ecuaciones lineales para las incógnitas ξ y η . Para obtener una de estas dos ecuaciones, en la igualdad (1) sustituir x por α . Para obtener la segunda ecuación, en la igualdad (1) sustituir x por β .

33. Sea α un número y sea $f \in \mathcal{P}(\mathbb{C})$. Encuentre los coeficientes λ, μ del resto al dividir f entre $(x - \alpha)^2$:

$$f(x) = q(x)(x - \alpha)^2 + \xi x + \eta. \tag{2}$$

Sugerencia: a partir de (2) formar un sistema de dos ecuaciones lineales para las incógnitas ξ y η . Para obtener una de estas dos ecuaciones, puede en la iguadad (2) sustituir $x = \alpha$. Para obtener la segunda ecuación, puede derivar (2) y luego sustituir $x = \alpha$.

Problemas principales

34. Sean $A \in \mathcal{M}_2(\mathbb{C})$ y $m \in \{1, 2, \ldots\}$. Supongamos que $\operatorname{sp}(A) = \{\alpha, \beta\}$, donde $\alpha \neq \beta$. Encontrar $\xi, \eta \in \mathbb{C}$ tales que

$$A^m = \xi A + \eta I_2.$$

35. Sean $A \in \mathcal{M}_2(\mathbb{C})$ y $m \in \{1, 2, ...\}$. Supongamos que $\operatorname{sp}(A) = \{\alpha\}$. Encontrar $\xi, \eta \in \mathbb{C}$ tales que

$$A^m = \xi A + \eta I_2.$$

Sucesión de Fibonacci y una progresión geométrica de matrices

Problemas auxiliares

La sucesión de Fibonacci $(F_n)_{n=0}^{\infty}$ se define mediante dos condiciones iniciales

$$F_0 = 0, F_1 = 1 (3)$$

y una fórmula recursiva de segundo orden (es decir, cada elemento F_n se expresa a través de dos elementos anteriores):

$$\forall n \in \{2, 3, \ldots\} \qquad F_n = F_{n-1} + F_{n-2}. \tag{4}$$

Los elementos de estas sucesión se llaman números de Fibonacci.

36. Calcule F_n para n = 0, 1, 2, 3, 4, 5, 6, 7.

Truco principal: pasar de números a vectores. Denotemos por v_n al vector formado por dos elementos sucesivos de la sucesión de Fibonacci:

$$v_n \coloneqq \left[\begin{array}{c} F_n \\ F_{n+1} \end{array} \right].$$

37. Muestre que las dos condiciones iniciales (3) se pueden escribir como una condición inicial para el vector v_0 :

$$v_0 = \left[\begin{array}{c} ? \\ ? \end{array}\right].$$

Problemas principales

38. Muestre que las componentes F_{n+1} y F_{n+2} del vector v_{n+1} son combinaciones lineales de las componentes F_n y F_{n+1} del vector v_n :

$$F_{n+1} = \underbrace{\qquad}_{?} F_n + \underbrace{\qquad}_{?} F_{n+1};$$

$$F_{n+2} = \underbrace{\qquad}_{?} F_n + \underbrace{\qquad}_{?} F_{n+1}.$$

39. Escriba dos ecuaciones del problema anterior como una ecuación matricial:

$$v_{n+1} = \underbrace{\left[\begin{array}{cc} ? & ? \\ ? & ? \end{array}\right]}_{A} v_n.$$

Valores y vectores propios, tareas adicionales, página 7 de 9

- **40.** Muestre por inducción que $v_n = A^n v_0$.
- **41.** Muestre que F_n es una entrada (¿cuál?) de la matriz A^n .
- **42.** (Programación, problema optativo). Recordar o buscar en internet el algoritmo de exponenciación binaria. Usando este algoritmo (para matrices 2×2) y los resultados de los problemas anteriores escriba un programa que calcule el n-ésimo número de Fibonacci para n grandes. Se recomienda usar lenguajes de programación que permiten trabajar con números enteros arbitrariamente grandes.
- 43. Calcule los valores propios de la matriz A.
- **44.** Busque la definición de la razón dorada φ (llamada también razón $\acute{a}urea$, $n\'{u}mero$ $\acute{a}ureo$). Exprese los valores propios de A en términos de φ .
- **45.** Calcule los vectores propios de A.
- **46.** Usando los resultados del problema anterior calcule A^n .
- 47. Usando el resultado del problema anterior escriba una fórmula explícita para F_n .

Norma de Frobenius y función exponencial

Problemas auxiliares

- 48. Escriba la definición de la norma de Frobenius de una matriz.
- 49. Escriba la definición de convergencia de una sucesión de matrices.
- **50.** Sea $(A_k)_{k=0}^{\infty}$ una sucesión de matrices y sea B una matriz. Demuestre que la sucesión $(A_k)_{k=0}^{\infty}$ converge a B si, y sólo si,

$$\lim_{k \to \infty} ||A_k - B||_F = 0.$$

Problemas principales

51. Propiedad subaditiva de la norma de Frobenius. Demuestre que la función $\|\cdot\|_F$ cumple con la propiedad subaditiva:

$$||A+B||_F \le ||A||_F + ||B||_F \qquad \forall A, B \in \mathcal{M}_n(\mathbb{C}).$$

52. Propiedad submultiplicativa de la norma de Frobenius. Demuestre que $\|\cdot\|_F$ cumple con la propiedad submultiplicativa:

$$||AB||_F \le ||A||_F ||B||_F \qquad \forall A, B \in \mathcal{M}_n(\mathbb{C}).$$

Indicación: para acotar $(AB)_{i,j}$ aplique la desigualdad de Cauchy–Schwarz.

53. Teorema de Weierstrass para la convergencia de series de matrices. Sea $\sum_{k=0}^{\infty} A_k$ una serie de matrices, $A_k \in \mathcal{M}_n(\mathbb{C})$. Supongamos que la serie numérica de sus normas de Frobenious converge:

$$\sum_{k=0}^{\infty} ||A_k||_F < +\infty.$$

Demuestre que la serie $\sum_{k=0}^{\infty} A_k$ converge. Indicación: use el criterio de Cauchy.

- 54. Convergencia de la serie que define la exponencial de una matriz. Demuestre que para toda $A \in \mathcal{M}_n(\mathbb{C})$ la serie $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ converge. Indicación: use el teorema de Weierstrass.
- 55. Propiedad principal de la función exponencial. Sean $A, B \in \mathcal{M}_n(\mathbb{C})$ tales que AB = BA. Demuestre que

$$\exp(A)\exp(B) = \exp(A+B).$$