
Convergencia de la serie

que define la función exponencial

Objetivos. Demostrar que la serie
∞∑
k=0

zk

k!
(1)

converge de manera absoluta para cada z en C. Demostrar que esta serie converge de
manera uniforme en cada subconjunto acotado de C.

Prerrequisitos. Ĺımites, convergencia de series, convergencia absoluta de series. Para
entender mejor este tema, es recomendable estudiar la convergencia de series de potencias
y la fórmula de Cauchy–Hadamard.

Aplicaciones. Definir la función exponencial por medio de la serie de potencias y de-
mostrar de manera rigurosa sus propiedades.

Camino que utiliza la fórmula de Cauchy–Hadamard

Repaso 1 (la fórmula de Cauchy–Hadamard y la convergencia de las series de potencias).
Sea a = (ak)k∈N0 ∈ CN0 y sea

L := lim sup
k→∞

k
√

|ak|.

Pongamos

R :=


1/L, 0 < L < +∞;

0, L = +∞;

+∞, L = 0.

Entonces, la serie
∞∑
k=0

akz
k

converge de manera absoluta en el disco {z ∈ C : |z| < R}. Más aún, para cada r tal que
0 < r < R, esta serie converge de manera uniforme en el disco {z ∈ C : |z| ≤ r}. Más
aún, la serie no converge para |z| > R.

Proposición 2. lim
k→∞

k
√
k! = +∞

Demostración. Denotemos el k-ésimo elemento de esta sucesión por xk:

xk :=
k
√
k! (k ∈ N).

Sea G > 0. Queremos encontrar un m en N tal que si k ≥ m, entonces xk > G.
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Sea h := ⌊G2⌋+ 1 y sea m := 2h. Notamos que si k ≥ m, entonces

k! =
k∏

j=1

j ≥
k∏

j=h+1

j ≥ hk−h > (G2)k−h = Gk+(k−2h) ≥ Gk.

Por lo tanto, para k ≥ m,
xk =

k
√
k! > G.

Proposición 3. La serie (1) tiene radio de convergencia +∞. En particular, la serie (1)
converge de manera absoluta para cada z en C. Más aún, para cada r > 0, la serie converge
de manera uniforme en el disco {z ∈ C : |z| ≤ r}.
Demostración. Se sigue de la Proposición 2 y de la fórmula de Cauchy–Hadamard.

Camino que no utiliza la fórmula de Cauchy–Hadamard

Repaso 4 (la suma de la progresión geométrica). Si q ∈ C \ {1} y m ∈ N, entonces
m−1∑
k=0

qk =
qm − 1

q − 1
=

1− qm

1− q
.

Si q ∈ C y |q| < 1, entonces
∞∑
k=0

qk =
1

1− q
.

Lema 5 (una cota superior para los términos de la serie que define la función exponencial).
Si r > 0, m := 2⌊4r2⌋+ 2 y k ≥ m, entonces

rk

k!
≤ 1

2k
.

Demostración. Sea h := ⌊4r2⌋+ 1. Escribimos m como 2h. Para cada k ≥ m,

k! =
k∏

j=1

j ≥
k∏

j=h+1

j > (4r2)k−h = (2r)k+(k−2h) ≥ (2r)k.

Por lo tanto,
rk

k!
≤ rk

(2r)k
=

1

2k
.

Teorema 6. Para cada z en C, la serie (1) converge de manera absoluta:

∞∑
k=0

|z|k

k!
< +∞.

Más aún, si r > 0, |z| ≤ r, N := 2⌊4r2⌋+ 2 y n ≥ N , entonces

∞∑
k=n+1

|z|k

k!
≤ 1

2n
.
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Demostración. 1. Sea z ∈ C. Pongamos r := |z| y definimos m como en el Lema 5.
Entonces, para cada k ≥ m,

k∑
j=0

∣∣∣∣zjj!
∣∣∣∣ ≤ m∑

j=0

rj

j!
+

∑
j=m+1

rj

j!
≤

m∑
j=0

rj

j!
+

∑
j=m+1

1

2j
=

m∑
j=0

rj

j!
+

1

2m
< +∞.

La cota también se tiene para k ≤ m. Hemos demostrado que las sumas parciales de la
serie

∑∞
j=0 |z|j/j! son acotadas. Por lo tanto, la serie converge.

2. Sean r > 0, |z| ≤ r, N := 2⌊4r2⌋+ 2 y n ≥ N . Entonces, por el Lema 5,

∞∑
k=n+1

|z|k

k!
≤

∞∑
k=n+1

1

2k
=

1

2n
.
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