El espacio de sucesiones acotadas

1 Definición. Definimos $N_{\infty} : \mathbb{C}^{\mathbb{N}} \to [0, +\infty]$, mediante la regla

$$N_{\infty}(a) \coloneqq \sup_{n \in \mathbb{N}} |a_n|.$$

Denotemos por $\ell^{\infty}(\mathbb{N})$ al conjunto

$$\{a \in \mathbb{C}^{\mathbb{N}} : N_{\infty}(a) < +\infty\},$$

y por $\|\cdot\|_{\infty}$ a la función N_{∞} restringida a $\ell^{\infty}(\mathbb{N})$.

- **2** Observación. $\ell^{\infty}(\mathbb{N})$ se puede ver como el espacio $B(\mathbb{N})$ de funciones acotadas definidas en \mathbb{N} con valores en \mathbb{C} . Varias propiedades de $\ell^{\infty}(\mathbb{N})$ se pueden ver como casos particulares de propiedades de B(X).
- **3 Proposición.** La función N_{∞} es subaditiva y homogénea absoluta. Si $N_{\infty}(a) = 0$, entonces $a = 0_{\mathbb{N}}$.
- **4 Proposición.** $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ es un espacio vectorial normado.
- **5 Proposición.** Sea $a \in \ell^{\infty}(\mathbb{N})$ y sea $k \in \mathbb{N}$. Entonces $|a_k| \leq ||a||_{\infty}$.
- **6 Observación.** Recordemos la definición del "medidor de Cauchy". Dada una sucesión $A = (a^{(p)})_{p \in \mathbb{N}}$ en un espacio métrico X, denotemos por γ_A la sucesión definida mediante la siguiente regla:

$$\gamma_A(m) := \sup_{p,q \ge m} d_X(a^{(p)}, a^{(q)}).$$

De esta definición se sigue que

$$\forall p, q \ge m$$
 $d_X(a^{(p)}, a^{(q)}) \le \gamma_A(m).$

Sabemos que A es de Cauchy si, y solo si,

$$\lim_{m \to \infty} \gamma_A(m) = 0.$$

7 Proposición. El espacio $\ell^{\infty}(\mathbb{N})$ es completo.

Demostración. Sea $A=(a^{(p)})_{p\in\mathbb{N}}$ una sucesión de Cauchy en $\ell^{\infty}(\mathbb{N})$. Si $p,q\in\mathbb{N},\,p,q\geq m$ y $k\in\mathbb{N}$, entonces

$$|a_k^{(p)} - a_k^{(q)}| \le ||a^{(p)} - a^{(q)}||_{\infty} \le \gamma_A(m).$$
 (1)

Entonces para cada k en \mathbb{N} la sucesión $(a_k^{(p)})_{p\in\mathbb{N}}$ es una sucesión de Cauchy en \mathbb{C} y por lo tanto tiene un límite en \mathbb{C} . Denotemos este límite por b_k . En la desigualdad (1) pasamos al límite cuando $q \to \infty$. Obtenemos

$$|a_k^{(p)} - b_k| \le \gamma_A(m).$$

Pamos al supremo sobre k:

$$N_{\infty}(a^{(p)}-b) \le \gamma_A(m).$$

Luego $b \in \ell^{\infty}(\mathbb{N})$ y $||a^{(p)} - b||_{\infty} \to 0$.