Anillos de conjuntos (un tema de análisis real)

Egor Maximenko, Luis Angel González Serrano

Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas México

22 de abril de 2024

Objetivos.

- Definir anillos y álgebras de conjuntos.
- Demostrar que la intersección de anillos es un anillo.
- Definir el anillo generado por una colección de conjuntos.
- Describir de manera explícita el anillo generado por un semianillo.

Prerrequisitos.

- Operaciones con conjuntos.
- Semianillos de conjuntos.
- σ -álgebras de conjuntos.
- Propiedades de particiones de conjuntos.

Anillo de conjuntos

Definición

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$.

Se dice que A es anillo de conjuntos sobre X, si:

- 1) $\emptyset \in \mathcal{A}$;
- 2) $\forall A, B \in \mathcal{A} \quad A \cup B \in \mathcal{A}$;
- 3) $\forall A, B \in \mathcal{A}$ $A \setminus B \in \mathcal{A}$.

En vez de "anillo de conjuntos sobre X", se dice brevemente "anillo de conjuntos" o "anillo".

Ejemplo trivial: el conjunto potencia

Sea X un conjunto.

Entonces, $\mathcal{P}(X)$ es un anillo sobre X.

Ejemplo de un anillo

Sea X un conjunto.

 $\mathcal{A} := \mathsf{el}$ conjunto de todos los subconjuntos finitos de X.

Entonces, A es un anillo sobre X.

Sea X un conjunto y sea $\mathcal A$ un anillo de conjuntos sobre X.

Entonces, $\mathcal A$ es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A}$;
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}$.

Sea X un conjunto y sea $\mathcal A$ un anillo de conjuntos sobre X.

Entonces, \mathcal{A} es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A}$;
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}$.

Sea X un conjunto y sea $\mathcal A$ un anillo de conjuntos sobre X.

Entonces, \mathcal{A} es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A}$;
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}$.

$$A \cap B$$

Sea X un conjunto y sea $\mathcal A$ un anillo de conjuntos sobre X.

Entonces, A es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A}$;
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}$.

$$A \cap B =$$

Sea X un conjunto y sea $\mathcal A$ un anillo de conjuntos sobre X.

Entonces, \mathcal{A} es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A}$;
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}$.

$$A \cap B = A \setminus (A \setminus B),$$

Sea X un conjunto y sea $\mathcal A$ un anillo de conjuntos sobre X.

Entonces, \mathcal{A} es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A};$
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}.$

$$A \cap B = A \setminus (A \setminus B), \qquad A \triangle B$$

Sea X un conjunto y sea $\mathcal A$ un anillo de conjuntos sobre X.

Entonces, A es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A}$;
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}$.

$$A \cap B = A \setminus (A \setminus B), \qquad A \triangle B =$$

Sea X un conjunto y sea \mathcal{A} un anillo de conjuntos sobre X.

Entonces, A es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A}$;
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}$.

$$A \cap B = A \setminus (A \setminus B),$$
 $A \triangle B = (A \setminus B) \cup (B \setminus A).$

Sea X un conjunto y sea $\mathcal{A}\subseteq\mathcal{P}(X)$ tal que:

1)
$$\emptyset \in \mathcal{A}$$
;

2) $\forall A, B \in \mathcal{A} \quad A \triangle B \in \mathcal{A}$;

3)
$$\forall A, B \in \mathcal{A} \quad A \cap B \in \mathcal{A}$$
.

Entonces, \mathcal{A} es un anillo de conjuntos.

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$ tal que:

- 1) $\emptyset \in \mathcal{A}$;
 - 2) $\forall A, B \in \mathcal{A} \quad A \triangle B \in \mathcal{A}$;
- 3) $\forall A, B \in \mathcal{A} \quad A \cap B \in \mathcal{A}$.

Entonces, $\ensuremath{\mathcal{A}}$ es un anillo de conjuntos.

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$ tal que:

- 1) $\emptyset \in \mathcal{A}$;
- 2) $\forall A, B \in \mathcal{A} \quad A \triangle B \in \mathcal{A}$;
- 3) $\forall A, B \in \mathcal{A} \quad A \cap B \in \mathcal{A}$.

Entonces, ${\cal A}$ es un anillo de conjuntos.

Idea de demostración.

 $A \cup B$

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$ tal que:

- 1) $\emptyset \in \mathcal{A}$;
- 2) $\forall A, B \in \mathcal{A} \quad A \triangle B \in \mathcal{A}$;
- 3) $\forall A, B \in \mathcal{A} \quad A \cap B \in \mathcal{A}$.

Entonces, ${\cal A}$ es un anillo de conjuntos.

$$A \cup B =$$

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$ tal que:

- 1) $\emptyset \in \mathcal{A}$;
- 2) $\forall A, B \in \mathcal{A} \quad A \triangle B \in \mathcal{A}$;
- 3) $\forall A, B \in \mathcal{A} \quad A \cap B \in \mathcal{A}$.

Entonces, $\ensuremath{\mathcal{A}}$ es un anillo de conjuntos.

$$A \cup B = (A \triangle B) \triangle (A \cap B),$$

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$ tal que:

- 1) $\emptyset \in \mathcal{A}$;
- 2) $\forall A, B \in \mathcal{A} \quad A \triangle B \in \mathcal{A}$;
- 3) $\forall A, B \in \mathcal{A} \quad A \cap B \in \mathcal{A}$.

Entonces, A es un anillo de conjuntos.

$$A \cup B = (A \triangle B) \triangle (A \cap B), \qquad A \setminus B$$

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$ tal que:

- 1) $\emptyset \in \mathcal{A}$;
- 2) $\forall A, B \in \mathcal{A} \quad A \triangle B \in \mathcal{A}$;
- 3) $\forall A, B \in \mathcal{A} \quad A \cap B \in \mathcal{A}$.

Entonces, ${\cal A}$ es un anillo de conjuntos.

$$A \cup B = (A \triangle B) \triangle (A \cap B), \qquad A \setminus B =$$

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$ tal que:

- 1) $\emptyset \in \mathcal{A}$;
- 2) $\forall A, B \in \mathcal{A} \quad A \triangle B \in \mathcal{A}$;
- 3) $\forall A, B \in \mathcal{A} \quad A \cap B \in \mathcal{A}$.

Entonces, \mathcal{A} es un anillo de conjuntos.

$$A \cup B = (A \triangle B) \triangle (A \cap B), \qquad A \setminus B = A \triangle (A \cap B).$$

Sea X un conjunto.

Consideremos \cup como una operación binaria en $\mathcal{P}(X)$.

Sea X un conjunto.

Consideremos \cup como una operación binaria en $\mathcal{P}(X)$.

Sabemos que \cup es asociativa y conmutativa.

Sea X un conjunto.

Consideremos \cup como una operación binaria en $\mathcal{P}(X)$.

Sabemos que \cup es asociativa y conmutativa.

Notemos que el conjunto vacío \emptyset es un elemento neutro para \cup :

$$\forall A \in \mathcal{P}(X)$$
 $A \cup \emptyset = A$.

Sea X un conjunto.

Consideremos \cup como una operación binaria en $\mathcal{P}(X)$.

Sabemos que \cup es asociativa y conmutativa.

Notemos que el conjunto vacío \emptyset es un elemento neutro para \cup :

$$\forall A \in \mathcal{P}(X)$$
 $A \cup \emptyset = A$.

Mostrar que si $A \neq \emptyset$, entonces no existe $B \in \mathcal{P}(X)$ tal que

$$A \cup B = \emptyset$$
.

Repaso: operación xor y la diferencia simétrica

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

Ejercicio

Demostrar que

$$(A \setminus B) \cup (B \setminus A) = \{x \colon (x \in A) \oplus (x \in B)\}.$$

$\mathcal{P}(X)$ con la operación \triangle es un grupo

1. Demostrar que \triangle es asociativa:

$$\forall A, B, C \in \mathcal{P}(X)$$
 $(A \triangle B) \triangle C = A \triangle (B \triangle C).$

2. Demostrar que \triangle es conmutativa:

$$\forall A, B \in \mathcal{P}(X)$$
 $A \triangle B = B \triangle C$.

3. Demostrar que \emptyset es un elemento neutro para \triangle :

$$\forall A \in \mathcal{P}(X)$$
 $A \triangle \emptyset = A$.

4. Dado A en $\mathcal{P}(X)$, encontrar B en $\mathcal{P}(X)$ tal que $A \triangle B = \emptyset$.

$$\mathcal{P}(X)$$
 con las operaciones \triangle y \cap es un anillo en el sentido de álgebra moderna

1. Demostrar la ley distributiva:

$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C).$$

- 2. Demostrar que \cap es asociativa y conmutativa.
- 3. Demostrar que X es un elemento neutro para \cap .

Álgebra de conjuntos

Definición

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$.

Se dice que \mathcal{A} es un álgebra de conjuntos sobre X, si \mathcal{A} es un anillo de conjuntos y $X \in \mathcal{A}$.

Álgebra de conjuntos, otra descripción equivalente

Ejercicio

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$.

Demuestre que A es un álgebra de conjuntos sobre X si, y solo si, A tiene las siguientes propiedades:

- 1) $\emptyset \in \mathcal{A}$,
- 2) $\forall A \in \mathcal{A} \quad X \setminus A \in \mathcal{A}$.
- 3) $\forall A, B \in \mathcal{A} \quad A \cup B \in \mathcal{A}$.

Álgebra de conjuntos, otra descripción equivalente

Ejercicio

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$.

Demuestre que A es un álgebra de conjuntos sobre X si, y solo si, A tiene las siguientes propiedades:

- 1) $\emptyset \in \mathcal{A}$,
- 2) $\forall A \in \mathcal{A} \quad X \setminus A \in \mathcal{A}$,
- 3) $\forall A, B \in \mathcal{A} \quad A \cup B \in \mathcal{A}$.

En otras palabras, en vez de pedir que $\mathcal A$ sea cerrada bajo la diferencia y tenga elemento X, se puede pedir que $\mathcal A$ sea cerrada bajo los complementos respecto a X.

Ejemplo de una colección que no es anillo

Sean
$$X = \{0, 1, 2\}$$
,

$$\mathcal{A} \coloneqq \Big\{\emptyset, \{0\}, \{0,1\}, \{0,2\}, \{0,1,2\}\Big\}.$$

Muestre que ${\mathcal A}$ es cerrada bajo \cup y \cap , pero no es anillo.

Relación de anillos con otras estructuras

Sea X un conjunto y sea $A \subseteq \mathcal{P}(X)$.

- 1. Demuestre que si \mathcal{A} es una σ -álgebra sobre X, entonces \mathcal{A} es un álgebra sobre X y, en particular, un anillo.
- 2. Demuestre que si \mathcal{A} es un anillo, entonces \mathcal{A} es un semianillo.

Intersección de anillos es un anillo

Proposición

Sea X un conjunto y sea Φ un conjunto de anillos sobre X.

Consideremos la intersección de todos los elementos de Φ :

$$\mathcal{R} \coloneqq \bigcap \Phi, \qquad \text{esto es}, \qquad \mathcal{R} = \bigcap_{\mathcal{A} \in \Phi} \mathcal{A},$$

esto es,

$$\mathcal{R} = \{ B \subseteq X : \forall A \in \Phi \mid B \in A \}.$$

Entonces, \mathcal{R} es un anillo.

Demostración

Veamos la demostración ahora en clase.

¿Quién quiere hacerla en el pizarrón?

El anillo generado por una colección de conjuntos

Sea X un conjunto y sea $\mathcal{C} \subseteq \mathcal{P}(X)$.

El anillo generado por una colección de conjuntos

Sea X un conjunto y sea $\mathcal{C} \subseteq \mathcal{P}(X)$.

Consideremos el conjunto de todos los anillos que contienen a \mathcal{C} :

$$\Phi := \Big\{ \mathcal{A} \subseteq \mathcal{P}(X) \colon \quad \mathcal{A} \text{ es un anillo} \quad \wedge \quad \mathcal{C} \subseteq \mathcal{A} \Big\}.$$

Sea $\mathcal R$ la intersección de todos los anillos que contienen a $\mathcal C$:

$$\mathcal{R}\coloneqq\bigcap\Phi,\quad \text{esto es,}\quad \mathcal{R}=\bigcap_{\mathcal{A}\in\Phi}\mathcal{A}.$$

Entonces, por la proposición anterior, \mathcal{R} es un anillo. Obviamente, $\mathcal{C}\subseteq\mathcal{R}$. Por lo tanto, $\mathcal{R}\in\Phi$.

Por ser la intersección de Φ , $\mathcal R$ es el elemento mínimo de Φ .

El anillo generado por una colección de conjuntos

Definición

Sea X un conjunto y sea $\mathcal{C} \subseteq \mathcal{P}(X)$.

Consideremos el conjunto de todos los anillos que contienen a \mathcal{C} :

$$\Phi := \big\{ \mathcal{A} \subseteq \mathcal{P}(X) \colon \quad \mathcal{A} \text{ es un anillo} \quad \wedge \quad \mathcal{C} \subseteq \mathcal{A} \big\}.$$

Sea

$$\mathcal{R} := \bigcap \Phi$$
.

 \mathcal{R} se llama el anillo generado por \mathcal{C} .

Ejemplo

Sea X un conjunto.

Consideremos las siguientes colecciones de subconjuntos de X:

$$\mathcal{C} := \{\emptyset\} \cup \Big\{ Y \subseteq X \colon \exists a \in X \quad Y = \{a\} \Big\},$$

$$\mathcal{A} := \{ Y \subseteq X \colon Y \text{ es finito} \}.$$

Demuestre que $\mathcal A$ es el anillo generado por $\mathcal C.$

Descripción del anillo generado por un semianillo

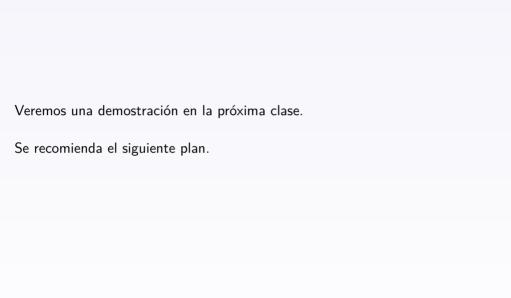
Teorema

Sea S un semianillo sobre X.

Denotemos por \mathcal{A} al conjunto de todos los subconjuntos de X que se pueden escribir como uniones finitas disjuntas de elementos de \mathcal{S} :

$$\mathcal{A} \coloneqq \left\{ B \in \mathcal{P}(X) \colon \exists m \in \mathbb{N} \ \exists P_1, \dots, P_m \in \mathcal{S} \ \text{disj. a pares,} \ B = \bigcup_{k=1}^m P_k
ight\}.$$

Entonces, A es el anillo generado por S.



Plan de demostración

- 1. Si $A, B \in \mathcal{A}$ y $A \cap B = \emptyset$, entonces $A \cup B \in \mathcal{A}$.
- 2. Si $r \in \mathbb{N}$, $A_1, \ldots, A_r \in \mathcal{A}$ y A_1, \ldots, A_r son disjuntos a pares, entonces $\bigcup_{i=1}^r A_i \in \mathcal{A}$.
- 3. Si $A, B \in \mathcal{A}$, entonces $A \cap B \in \mathcal{A}$.
- 4. Si $r \in \mathbb{N}$ y $A_1, \ldots, A_r \in \mathcal{A}$, entonces $\bigcap_{i=1}^r A_i \in \mathcal{A}$.
- 5. Si $P, Q \in \mathcal{S}$, entonces $P \setminus Q \in \mathcal{A}$.
- 6. Si $A, B \in \mathcal{A}$, entonces $A \setminus B \in \mathcal{A}$.
- 7. Si $A, B \in \mathcal{A}$, entonces $A \cup B \in \mathcal{A}$.
- 8. A es un anillo sobre X.
- 9. Si \mathcal{H} es un anillo sobre X tal que $S \subseteq \mathcal{H}$, entonces $\mathcal{A} \subseteq \mathcal{H}$.