Anillos de conjuntos

Objetivos. Definir anillos y álgebras de conjuntos. Describir de manera explícita el anillo generado por un semianillo.

Requisitos. Operaciones con conjuntos, semianillo de conjuntos, σ -álgebras de conjuntos.

- **1 Definición** (anillo de conjuntos). Sea X un conjunto. Un conjunto $\mathcal{A} \subseteq 2^X$ se llama anillo de conjuntos sobre X si $\emptyset \in \mathcal{A}$ y \mathcal{A} es cerrado bajo las operaciones de la unión de dos conjuntos y la diferencia de dos conjuntos:
 - $(1) \varnothing \in \mathcal{A};$
 - (2) para cualesquiera $A, B \in \mathcal{A}, A \cup B \in \mathcal{A}$;
 - (3) para cualesquiera $A, B \in \mathcal{A}, A \setminus B \in \mathcal{A}$.
- **2 Observación.** En vez de "anillo de conjuntos sobre X", se dice brevemente "anillo de conjuntos" o "anillo".
- **3 Definición** (álgebra de conjuntos). Un conjunto \mathcal{A} se llama álgebra de conjuntos sobre X si \mathcal{A} es un anillo de conjunto de conjuntos y $X \in \mathcal{A}$.
- **4 Proposición.** Sea X un conjunto y sea \mathcal{A} un anillo de conjuntos sobre X. Entonces, \mathcal{A} es cerrado bajo la intersección de dos conjuntos y la diferencia simétrica de dos conjuntos:

$$\forall A, B \in \mathcal{A}$$
 $A \cap B \in \mathcal{A}$;
 $\forall A, B \in \mathcal{A}$ $A \triangle B \in \mathcal{A}$.

Idea de demostración.

$$A \cap B = A \setminus (A \setminus B), \qquad A \triangle B = (A \setminus B) \cup (B \setminus A).$$

- **5 Proposición.** Sea X un conjunto y sea $A \subseteq 2^X$. Supongamos que la colección A contiene al conjunto vacío, es cerrada bajo la diferencia simétrica de dos conjuntos y es cerrada bajo la intersección de dos conjuntos:
 - $(1) \varnothing \in \mathcal{A};$
 - (2) para cualesquiera $A, B \in \mathcal{A}, A \triangle B \in \mathcal{A};$
 - (3) para cualesquiera $A, B \in \mathcal{A}, A \cap B \in \mathcal{A}$.

Entonces, A es un anillo de conjuntos.

Idea de demostración.

$$A \cup B = (A \triangle B) \triangle (A \cap B), \qquad A \setminus B = A \triangle (A \cap B).$$

Anillos de conjuntos, página 1 de 3

- **6 Ejercicio.** Sea X un conjunto. Consideramos \cup , \cap , \setminus , \triangle como operaciones binarias sobre 2^X . Determinar, cuales dos estas operaciones parecen más por sus propiedades a la adición y multiplicación en \mathbb{Z} .
 - ¿Cuál conjunto es el elemento neutro para la operación ∪?
 - Dado un conjunto $A \subseteq X$, ¿existe $B \subseteq X$ tal que $A \cup B = \emptyset$?
- **7 Ejemplo.** Sea $X = \{0, 1, 2\}$. La siguiente colección de conjuntos tiene \emptyset como uno de sus elementos y es cerrada bajo \cup y \cap , pero no es un anillo.

$$\mathcal{A} = \Big\{ \varnothing, \{0\}, \{0,1\}, \{0,2\}, \{0,1,2\} \Big\}.$$

- 8 Ejercicio. Sea X un conjunto y sea $\mathcal{A} \subseteq 2^X$ una colección de conjuntos tal que $\emptyset \in \mathcal{A}$.
 - 1. Supongamos que \mathcal{A} es cerrada bajo \cup y \triangle . ¿Es \mathcal{A} un anillo de conjuntos?
 - 2. Supongamos que \mathcal{A} es cerrada bajo \cap y \. ¿Es \mathcal{A} un anillo de conjuntos?
 - 3. Supongamos que \mathcal{A} es cerrada bajo \triangle y \. ¿Es \mathcal{A} un anillo de conjuntos?

En caso de una respuesta negativa, hay que construir un contraejemplo.

9 Proposición (intersección de anillos es anillo). Sea Φ un conjunto de anillos sobre un conjunto X. Consideremos la intersección de todos los elementos de Λ :

$$\mathcal{R}\coloneqq\bigcap\Phi,\qquad \textit{esto es},\qquad \mathcal{R}=\bigcap_{\mathcal{A}\in\Phi}\mathcal{A},$$

esto es,

$$\mathcal{R} = \big\{ B \subseteq X \colon \quad \forall \mathcal{A} \in \Phi \quad B \in \mathcal{A} \big\}.$$

Entonces, \Re es un anillo.

Parte de demostración. Mostremos que \mathcal{R} es cerrado bajo las diferencias. Sean $P, Q \in \mathcal{R}$. Mostremos que $P \setminus Q \in \mathcal{R}$.

Sea $A \in \Phi$. Entonces, $P, Q \in A$. Como A es un anillo, $P \setminus Q \in A$. Como A es un elemento arbitrario de Λ , hemos demostrado que $P \setminus Q \in \mathcal{R}$.

- **10 Corolario.** Sea $\mathfrak{C} \subseteq 2^X$. Denotemos por \mathcal{A} a la intersección de todos los anillos que contienen a \mathfrak{C} . Entonces, \mathcal{A} es un anillo. Más aún, \mathcal{A} es el anillo más pequeño entre todos los anillos que contienen a \mathfrak{C} . Es decir, si \mathfrak{B} es un anillo sobre X y $\mathfrak{C} \subseteq \mathfrak{B}$, entonces $\mathcal{A} \subseteq \mathfrak{B}$.
- 11 Definición (el anillo generado por un conjunto de conjuntos). Sea $\mathcal{C} \subseteq 2^X$. La intersección de todos los anillos que contienen a \mathcal{C} se llama el anillo generado por \mathcal{C} . En otras palabras, el anillo generado por \mathcal{C} se define como $\cap \Lambda$, donde Λ es el conjunto de todos los anillos sobre X que contienen a la colección \mathcal{C} .

Relación con otras estructuras

- 12 Ejercicio. Sea X un conjunto y sea \mathcal{F} una σ -álgebra sobre X. Demuestre que \mathcal{F} es un álgebra (en particular, un anillo) sobre X.
- 13 Ejercicio. Sea X un conjunto. Demuestre que 2^X es un álgebra (en particular, un anillo) sobre X.
- 14 Ejercicio (semianillo de conjuntos, repaso). Repasar la definición de semianillo de conjuntos.
- 15 Ejercicio. Sea \mathcal{A} un anillo. Demostrar que \mathcal{A} es un semianillo.

Descripción del anillo generado por un semianillo

16 Teorema (descripción del anillo generado por un semianillo). Sea S un semianillo sobre X. Denotemos por A al conjunto de todos los subconjuntos de X que se pueden escribir como uniones finitas disjuntas de elementos de S:

$$\mathcal{A} := \left\{ B \in 2^X \colon \quad \exists m \in \mathbb{N} \quad \exists P_1, \dots, P_m \in \mathcal{S} \quad \textit{disj. a pares,} \quad B = \bigcup_{k=1}^m P_k \right\}.$$

Entonces, A es el anillo generado por S.

Demostración. A continuación, escribimos los pasos principales de la demostración. Hay que hacer cada paso de manera detallada.

- 1. Si $A, B \in \mathcal{A}$ y $A \cap B = \emptyset$, entonces $A \cup B \in \mathcal{A}$.
- 2. Si $r \in \mathbb{N}$, $A_1, \ldots, A_r \in \mathcal{A}$ y A_1, \ldots, A_r son disjuntos a pares, entonces $\bigcup_{j=1}^r A_j \in \mathcal{A}$.
- 3. Si $A, B \in \mathcal{A}$, entonces $A \cap B \in \mathcal{A}$.
- 4. Si $r \in \mathbb{N}$ y $A_1, \ldots, A_r \in \mathcal{A}$, entonces $\bigcap_{j=1}^r A_j \in \mathcal{A}$.
- 5. Si $P, Q \in \mathcal{S}$, entonces $P \setminus Q \in \mathcal{A}$.
- 6. Si $A, B \in \mathcal{A}$, entonces $A \setminus B \in \mathcal{A}$.
- 7. Si $A, B \in \mathcal{A}$, entonces $A \cup B \in \mathcal{A}$.
- 8. \mathcal{A} es un anillo.
- 9. Si \mathcal{B} es un anillo sobre X tal que $\mathcal{S} \subseteq \mathcal{B}$, entonces $\mathcal{A} \subseteq \mathcal{B}$.