Convolución sobre los enteros y el álgebra de Wiener

Objetivos. Estudiar la convolución sobre el grupo \mathbb{Z} , el teorema de convolución y el álgebra de Wiener.

Definición 1 (convolución de dos sucesiones absolutamente sumables). Sean $a, b \in \ell^1(\mathbb{Z})$. Se define la sucesión $a * b : \mathbb{Z} \to \mathbb{C}$ mediante la siguiente regla:

$$(a*b)_j = \sum_{k \in \mathbb{Z}} a_{j-k} b_k. \tag{1}$$

Proposición 2. Sean $a,b \in \ell^1(\mathbb{Z})$. Entonces para cada j en \mathbb{Z} la serie (1) converge absolutamente, y la sucesión a*b pertenece a la clase $\ell^1(\mathbb{Z})$.

Ejemplo 3 (filtros). Sea $x \in \ell^1(\mathbb{Z})$. Calcular a*x para cada uno de los siguientes ejemplos:

- 1. $a_{-1} = a_0 = a_1 = 1/3$, las demás componentes son 0;
- 2. $a_0 = -1$, $a_1 = 1$, las demás componentes son 0;
- 3. $a_{-1} = a_1 = 1$, $a_0 = -2$, las demás componentes son 0.

Proposición 4 (el teorema de convolución sobre el grupo \mathbb{Z}). Sean $a, b \in \ell^1(\mathbb{Z})$. Entonces

$$F_{\mathbb{Z}}(a*b) = (F_{\mathbb{Z}}a)(F_{\mathbb{Z}}b),$$

esto es, para cada x en \mathbb{R}

$$\widetilde{a * b}(x) = \widecheck{a}(x)\widecheck{b}(x).$$

Definición 5 (álgebra de Wiener). Denotamos por $W(\mathbb{R}_{2\pi})$ el conjunto de las funciones de la forma \check{a} con a en $\ell^1(\mathbb{Z})$. Formalmente,

$$W(\mathbb{R}_{2\pi}) = \{ f \in \mathbb{C}^{\mathbb{R}} : \exists a \in \ell^1(\mathbb{Z}) \mid f = \check{a} \}.$$

El conjunto $W(\mathbb{R})$ se considera con operaciones por puntos.

Proposición 6. $(\ell^1(\mathbb{Z}), *)$ y $W(\mathbb{R}_{2\pi})$ son álgebras complejas asociativas conmutativas con identidad. La función $a \mapsto \check{a}$ es un isomorfismo entre estas álgebras.