Transformaciones lineales compactas y composiciones (un tema de análisis funcional)

Egor Maximenko https://esfm.egormaximenko.com

Instituto Politécnico Nacional (México) Escuela Superior de Física y Matemáticas

2 de agosto de 2024

Objetivo

Demostrar que composiciones de transformaciones lineales compactas con transformaciones lineales acotadas son compactas.

Prerrequisitos

- Transformaciones lineales compactas.
- Imágenes de conjuntos totalmente acotados respecto a funciones Lipschitz continuas.
- Operaciones lineales con conjuntos totalmente acotados en espacios normados.

Transformaciones lineales compactas, definición

En este tema suponemos que V, W, X son espacios de Banach complejos.

Transformaciones lineales compactas, definición

En este tema suponemos que V, W, X son espacios de Banach complejos.

$$B_V := \{ v \in V : \|v\|_V < 1 \}.$$

Definición

Una transformación lineal $T \colon V \to W$ se llama compacta , si cl $(T[B_V])$ es un subconjunto compacto de W.

Transformaciones lineales compactas, definición

En este tema suponemos que V, W, X son espacios de Banach complejos.

$$B_V := \{ v \in V : \|v\|_V < 1 \}.$$

Definición

Una transformación lineal $T \colon V \to W$ se llama compacta , si cl $(T[B_V])$ es un subconjunto compacto de W.

$$\mathcal{K}(V,W)\coloneqq \mathsf{todas}\ \mathsf{las}\ \mathsf{transformaciones}\ \mathsf{lineales}\ \mathsf{compactas}\ V o W.$$

Transformaciones lineales compactas = totalmente acotadas

Proposición

Sean V,W espacios de Banach complejos y sea $T\colon V o W$ una transformación lineal.

- Son equivalentes:

 (a) T es compacta;
- (b) $T[B_V]$ es totalmente acotado;
- (c) para cada $D \subseteq V$ acotado, T[D] es totalmente acotado.

Transformaciones lineales compactas = totalmente acotadas

Proposición

Sean V,W espacios de Banach complejos y sea $T\colon V o W$ una transformación lineal.

- Son equivalentes:

 (a) T es compacta:
- (b) $T[B_V]$ es totalmente acotado:
- (c) para cada $D \subseteq V$ acotado, T[D] es totalmente acotado.

Este criterio, en general, no se cumple para espacios normados.

Transformaciones lineales compactas = totalmente acotadas

Proposición

Sean V,W espacios de Banach complejos y sea $T\colon V o W$ una transformación lineal.

Son equivalentes:

- (a) T es compacta;
- (b) $T[B_V]$ es totalmente acotado;
- (c) para cada $D \subseteq V$ acotado, T[D] es totalmente acotado.

Este criterio, en general, no se cumple para espacios normados.

Corolario

 $\mathcal{K}(V,W)\subseteq\mathcal{B}(V,W).$

Repaso: conjuntos totalmente acotados y funciones Lipschitz continuas

En este recordatorio suponemos que $X,\,Y$ son espacios métricos.

Proposición

Sean $f \in \text{Lip}(X, Y)$, $Q \subseteq X$ un conjunto totalmente acotado.

Entonces, f[Q] es un conjunto totalmente acotado.

Repaso: un múltiple por escalar de un conjunto totalmente acotado

En este recordatorio suponemos que ${\it V}$ es un espacio normado complejo.

Proposición

Sea $Q\subseteq V$ totalmente acotado y sea $\lambda\in\mathbb{C}.$

Entonces, λQ es totalmente acotado.

Idea: la función $v\mapsto \lambda v$ es Lipschitz continua.

Composición ST, donde $S \in \mathcal{K}(V, W)$

Regresamos a la suposición que V, W, X son espacios de Banach complejos.

Proposición

Sean $S \in \mathcal{K}(W,X)$, $T \in \mathcal{B}(V,W)$.

Entonces, $ST \in \mathcal{K}(V, W)$.

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W.$$

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W$$
.

$$(ST)[B_V]$$

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W$$
.

$$(ST)[B_V] =$$

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W$$
.

$$(ST)[B_V] = S[T[B_V]]$$

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W$$
.

$$(ST)[B_V] = S[T[B_V]] \subseteq$$

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W$$
.

$$(ST)[B_V] = S[T[B_V]] \subseteq S[\gamma B_W]$$

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W$$
.

$$(ST)[B_V] = S[T[B_V]] \subseteq S[\gamma B_W] =$$

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W$$
.

$$(ST)[B_V] = S[T[B_V]] \subseteq S[\gamma B_W] = \gamma S[B_W].$$

Como $T \in \mathcal{B}(V, W)$, elegimos $\gamma > 0$ tal que

$$T[B_V] \subseteq \gamma B_W.$$

Luego

$$(ST)[B_V] = S[T[B_V]] \subseteq S[\gamma B_W] = \gamma S[B_W].$$

Como $S \in \mathcal{K}(W,X)$, $S[B_W]$ es totalmente acotado.

Luego $\gamma S[B_W]$ y $(ST)[B_V]$ también son totalmente acotados.

Composición ST, donde $T \in \mathcal{K}(V, W)$

Proposición

Sean $S \in \mathcal{B}(W, X)$, $T \in \mathcal{K}(V, W)$.

Entonces, $ST \in \mathcal{K}(V, W)$.

Como $T \in \mathcal{K}(V, W)$, $T[B_V]$ es totalmente acotado.

Como $T \in \mathcal{K}(V, W)$, $T[B_V]$ es totalmente acotado.

Recordamos que

$$(ST)[B_V] = S[T[B_V]].$$

Como $T \in \mathcal{K}(V, W)$, $T[B_V]$ es totalmente acotado.

Recordamos que

$$(ST)[B_V] = S[T[B_V]].$$

Como $S \in \mathcal{B}(W,X) \subseteq \text{Lip}(W,X)$, $S[T[B_V]]$ es totalmente acotado.