## Caracteres del grupo $\mathbb R$ y del grupo $\mathbb T$

Diana Marcela Erazo Borja, Egor Maximenko

Seminario "Teoría de representaciones en análisis"

6 de octubre de 2025

Conceptos preliminares

Caracteres del grupo

lacksquare Caracteres del grupo  $\mathbb T$ 

## **Objetivos**

ullet Mostrar que todos los caracteres del grupo  ${\mathbb R}$  son de la forma

$$\varkappa_{\xi}(x) \coloneqq \exp(2\pi i \xi x) \qquad (x, \xi \in \mathbb{R}).$$

ullet Mostrar que todos los caracteres del grupo  $\mathbb{T}\coloneqq\{z\in\mathbb{C}\colon\;|z|=1\}$  son de la forma

$$\omega_m(t) \coloneqq t^m \qquad (t \in \mathbb{T}, \ m \in \mathbb{Z}).$$

 $\bullet$  Describir los grupos duales de  $\mathbb R$  y  $\mathbb T.$ 

## Prerrequisitos

- Caracteres de un grupo abeliano localmente compacto.
- El grupo dual de un grupo abeliano localmente compacto.
- Propiedades básicas de la función exponencial compleja.
- Teorema fundamental del cálculo.
- La ecuación diferencial  $f'(x) = \alpha f(x)$ .

#### Plan

Conceptos preliminares

igcirc Caracteres del grupo  $\Bbb R$ 

Caracteres del grupo T

# Grupo abeliano localmente compacto

$$(G, +, \tau)$$
 se llama (grupo abeliano localmente compacto), si:

- (G, +) es un grupo abeliano.
- $(G, \tau)$  es un espacio topológico localmente compacto (Hausdorff).
- Las operaciones  $(x, y) \mapsto x + y$  y  $x \mapsto -x$  son continuas.

Nota. Un espacio topológico se dice localmente compacto si

$$(\forall a \in G) \quad (\exists V \in \tau) \quad (a \in V \land \operatorname{clos}(V) \text{ es compacto}).$$

#### Caracteres de un GALC

Un caracter de un GALC es un homomorfismo continuo  $G \to \mathbb{T}$ .

Es decir, si  $\varphi$  es un caracter de G, entonces  $\varphi:G\to\mathbb{T}$  es una función continua y satisface que para todo  $a,b\in G$ ,

$$\varphi(a+b)=\varphi(a)\varphi(b).$$

## El grupo dual de un GALC

Sea G un GALC.

El dual de G se denota por  $\widehat{G}$  y se define como

 $\widehat{G} :=$ el conjunto de los caracteres de G, con las operaciones punto a punto:

$$(\varphi_1\varphi_2)(a)=\varphi_1(a)\varphi_2(a).$$

Es fácil ver que  $\widehat{G}$  es un grupo abeliano.

# Repaso: la ecuación diferencial para la función exponencial

#### Proposición

Sean  $\alpha, \beta \in \mathbb{C}$ . Existe una única función derivable  $f: \mathbb{R} \to \mathbb{C}$  tal que

$$f'(x) = \alpha f(x) \qquad (x \in \mathbb{R})$$

У

$$f(0) = \beta$$
.

Esta función es

$$f(x) = \beta e^{\alpha x}$$
  $(x \in \mathbb{R}).$ 

#### Idea de demostración de la unicidad

Considerar

$$q(x) := f(x) e^{-\alpha x}$$
.

Mostrar que q'(x) = 0 y concluir que q es una constante.

# Repaso: el teorema fundamental del cálculo, para funciones continuas complejas

#### Proposición

Sea  $f \in C(\mathbb{R}, \mathbb{C})$ . Definimos  $g \colon \mathbb{R} \to \mathbb{C}$ ,

$$g(y) := \int_0^y f(x) \, \mathrm{d}x.$$

Entonces, para cada y en  $\mathbb{R}$ ,

$$g'(y)=f(y).$$

Recordemos que si y < 0,

$$\int_0^y f(x) \, \mathrm{d}x := -\int_x^0 f(x) \, \mathrm{d}x.$$

# Repaso: la función exponencial imaginaria

Recordemos algunas propiedades de la función

$$x \mapsto e^{ix}$$
  $(x \in \mathbb{R}).$ 

Propiedad de homomorfismo:

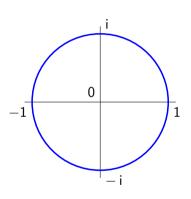
$$e^{i(x+y)} = e^{ix} e^{iy}$$
  $(x, y \in \mathbb{R}).$ 

La imagen:

$$\{e^{ix}: x \in \mathbb{R}\} = \mathbb{T}.$$

El núcleo:

$$e^{ix} = 1 \qquad \Longleftrightarrow \qquad x \in 2\pi \mathbb{Z}.$$



#### Plan

Conceptos preliminares

igorplus 2 Caracteres del grupo  $\Bbb R$ 

3 Caracteres del grupo T

# Fórmula para los caracteres del grupo ${\mathbb R}$

Para cada  $\xi$  en  $\mathbb{R}$ , definimos  $\varkappa_{\xi} \colon \mathbb{R} \to \mathbb{T}$ ,

$$u_{\xi}(x) \coloneqq \mathrm{e}^{2\pi\,\mathrm{i}\,\xi x}\,.$$

Algunos autores prefieren trabajar sin el coeficiente  $2\pi$ .

#### Proposición

 $u_{\xi} \in \widehat{\mathbb{R}}.$ 

#### Demostración

$$\varkappa_{\xi}(x) \coloneqq \mathrm{e}^{2\pi\,\mathrm{i}\,\xi x}\,.$$

La continuidad se sigue de la continuidad de la función exponencial.

 $\varkappa_{\varepsilon}$  es un homomorfismo:

Dados  $x, y \in \mathbb{R}$ , se tiene que

$$\varkappa_\xi(x+y) = e^{2\pi\,\mathrm{i}\,\xi(x+y)} = e^{2\pi\,\mathrm{i}\,\xi x} e^{2\pi\,\mathrm{i}\,\xi y} = \varkappa_\xi(x)\varkappa_\xi(y).$$

# Lema sobre $\exp(ax) = 1$

#### Lema

Sea  $a\in\mathbb{C}$  tal que

$$\forall x \in \mathbb{R}$$
  $e^{ax} = 1$ .

Entonces, a = 0.

# Lema sobre $\exp(ax) = 1$

#### Lema

Sea  $a\in\mathbb{C}$  tal que

$$\forall x \in \mathbb{R}$$
  $e^{ax} = 1$ .

Entonces, a = 0.

**Demostración.** Derivamos ambos lados de la igualdad respecto a la variable x:

$$a e^{ax} = 0.$$

Concluimos que a = 0.

# La correspondencia $\xi\mapsto \varkappa_\xi$ es inyectiva

#### Proposición

Si  $\xi, \eta \in \mathbb{R}$  tales que

$$\varkappa_{\xi} = \varkappa_{\eta},$$

entonces  $\xi = \eta$ .

#### Demostración

Sean  $\xi, \eta \in \mathbb{R}$  tal que  $\varkappa_{\xi} = \varkappa_{\eta}$ .

Entonces, para todo  $x \in \mathbb{R}$  se cumple que

$$e^{2\pi i x \xi} = e^{2\pi i x \eta}.$$

Por lo tanto,

$$e^{2\pi\,\mathrm{i}(\xi-\eta)x}=1,\;\;$$
 para todo  $x\in\mathbb{R}.$ 

De acuerdo con el lema anterior, se concluye que  $\xi=\eta.$ 

Lema sobre la integral con límite superior variable de un caracter de  ${\mathbb R}$ 

#### Lema

Sea  $\gamma \in \widehat{\mathbb{R}}$ . Entonces, existe a>0 tal que

$$\int_0^a \gamma(x) \, \mathrm{d}x \neq 0.$$

# Primera demostración del lema (derivamos la integral)

Definimos  $J \colon \mathbb{R} \to \mathbb{C}$ ,

$$J(y) := \int_0^y \gamma(x) \, \mathrm{d}x.$$

Razonando por reducción al absurdo, supongamos que J(y)=0 para cada y>0. Derivamos respecto al parámetro y, aplicando el teorema fundamental del cálculo:

$$0 = J'(y) = \gamma(y)$$
, para todo  $y > 0$ .

Esto no es posible porque

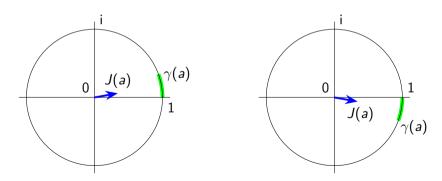
$$|\gamma(y)|=1.$$

# Idea intuitiva de la segunda demostración del lema

Definimos  $J(a) := \int_0^a \gamma(x) dx = a \cdot (\text{el valor promedio de } \gamma \text{ en } [0, a]).$ 

Como  $\gamma$  es continua y  $\gamma(0) = 1$ , este valor promedio es cercano a 1, si a es pequeño.

Los siguientes dos dibujos muestran las situaciones posibles.



# Segunda demostración del lema (usamos la continuidad de $\gamma$ en 0)

Como  $\gamma$  es continua y  $\gamma(0) = 1$ , encontramos a > 0 tal que

$$\forall x \in (0,a) \qquad |\gamma(x)-1| < \frac{1}{2}.$$

Mostramos que esta integral J(a) es cercana al número a:

$$|J(a)-a|=\left|\int_0^a\gamma(x)\,\mathrm{d}x-\int_0^a\mathrm{d}x\right|=\left|\int_0^a(\gamma(x)-1)\,\mathrm{d}x\right|\leq\int_0^a|\gamma(x)-1|\,\mathrm{d}x\leq\frac{a}{2}.$$

Por la desigualdad inversa del triángulo,

$$|J(a)| = |a - (a - J(a))| \ge a - |a - J(a)| \ge a - \frac{a}{2} = \frac{a}{2} > 0.$$

# La forma general de los caracteres de $\ensuremath{\mathbb{R}}$

#### Teorema

Para cada  $\gamma$  en  $\widehat{\mathbb{R}}$ , existe  $\xi$  en  $\mathbb{R}$  tal que

$$\gamma = \varkappa_{\xi}$$
.

#### Demostración: inicio

Sea  $\gamma \in \widehat{\mathbb{R}}$ . Encontramos a > 0 tal que  $J(a) \neq 0$ .

Para cada x en  $\mathbb{R}$ , consideramos la siguiente expresión:

$$J(x+a)-J(x)=\int_0^{x+a}\gamma(y)\,\mathrm{d}y-\int_0^x\gamma(y)\,\mathrm{d}y=\int_x^{x+a}\gamma(y)\,\mathrm{d}y.$$

Hacemos el cambio de variable u = y - x:

$$J(x+a)-J(x)=\int_0^a \gamma(x+u)\,\mathrm{d}u.$$

De manera equivalente, hemos usado el hecho que la medida de Lebesgue es invariante bajo traslaciones.

## Demostración: $\gamma$ es derivable

Usamos la suposición de que  $\gamma$  es un caracter:

$$J(x+a)-J(x)=\int_0^a\gamma(x+u)\,\mathrm{d}u=\int_0^a\gamma(x)\gamma(u)\,\mathrm{d}u=\gamma(x)\int_0^a\gamma(u)\,\mathrm{d}u=\gamma(x)J(a).$$

De aquí,

$$\gamma(x) = \frac{J(x+a) - J(x)}{J(a)}.$$

El lado derecho es una función derivable. Concluimos que  $\gamma$  es derivable:

$$\gamma'(x) = \frac{J'(x+a) - J'(x)}{J(a)} = \frac{\gamma(x+a) - \gamma(x)}{J(a)} = \frac{\gamma(x)(\gamma(a) - 1)}{J(a)}.$$

# Demostración: una ecuación diferencial para $\gamma$

Definimos

$$\alpha \coloneqq \frac{\gamma(\mathsf{a}) - 1}{J(\mathsf{a})}.$$

A partir de la igualdad anterior, se tiene la siguiente ecuación diferencial

$$\gamma'(x) = \alpha \, \gamma(x),$$

con la condición inicial

$$\gamma(0) = 1.$$

La solución de esta ecuación es

$$\gamma(x)=\mathrm{e}^{\alpha x}\,.$$

# Demostración: otra deducción de la ecuación diferencial para $\gamma$

Ya sabemos que  $\gamma$  es derivable. Usamos el hecho que  $\gamma$  es un caracter:

$$\gamma(x+y)=\gamma(x)\gamma(y).$$

Derivamos ambos lados respecto y:

$$\gamma'(x+y) = \gamma(x)\gamma'(y).$$

Ahora sustituimos y = 0 y ponemos  $\alpha := \gamma'(0)$ :

$$\gamma'(x) = \alpha \gamma(x).$$

Igual que antes, la solución es  $\gamma(x) = e^{\alpha x}$ .

#### Demostración: final

Hemos mostrado que

$$\gamma(x) = e^{\alpha x} \qquad (x \in \mathbb{R}).$$

Note que para cada x en  $\mathbb{R}$ ,

$$1 = |\gamma(x)| = |e^{\alpha x}| = |e^{\operatorname{Re}(\alpha)x} e^{\operatorname{i}\operatorname{Im}(\alpha)x}| = e^{\operatorname{Re}(\alpha)x}.$$

Lo anterior se cumple solamente si  $Re(\alpha) = 0$ .

Definimos  $\xi \coloneqq \frac{\alpha}{2\pi i}$ . Entonces,  $\xi \in \mathbb{R}$ .

Para todo x en  $\mathbb{R}$ ,

$$\gamma(x) = \mathrm{e}^{2\pi\,\mathrm{i}\,\xi x}\,.$$

# Descripción del grupo $\widehat{\mathbb{R}}$

Definimos  $K \colon \mathbb{R} \to \widehat{\mathbb{R}}$ ,

$$K(\xi) := \varkappa_{\xi}.$$

# Descripción del grupo $\widehat{\mathbb{R}}$

Definimos  $K \colon \mathbb{R} \to \widehat{\mathbb{R}}$ ,

$$K(\xi) \coloneqq \varkappa_{\xi}.$$

#### Teorema

*K* es un isomorfismo de grupos.

# Descripción del grupo $\widehat{\mathbb{R}}$

Definimos  $K \colon \mathbb{R} \to \widehat{\mathbb{R}}$ ,

$$K(\xi) \coloneqq \varkappa_{\xi}.$$

#### Teorema

K es un isomorfismo de grupos.

Ejercicio: demostrar que

$$K(\xi + \eta) = K(\xi)K(\eta).$$

Ya hemos demostrado que K es inyectiva y sobre.

#### Plan

Conceptos preliminares

② Caracteres del grupo ℝ

lacksquare Caracteres del grupo  $\mathbb T$ 

# Definición de $\omega_m$

Dado m en  $\mathbb{Z}$ , definimos  $\omega_m \colon \mathbb{T} \to \mathbb{T}$ ,

$$\omega_m(t) := t^m$$
.

## Proposición

 $\omega_m \in \widehat{\mathbb{T}}$ .

Ejercicio: demostrar la proposición.

#### Lema sobre $t^p = 1$

#### Lema

Sea  $p \in \mathbb{Z}$  tal que

$$\forall t \in \mathbb{T} \qquad t^p = 1.$$

Entonces, p = 0.

#### Lema sobre $t^p = 1$

#### Lema

Sea  $p \in \mathbb{Z}$  tal que

$$\forall t \in \mathbb{T} \qquad t^p = 1.$$

Entonces, p = 0.

**Demostración.** Supongamos que  $p \neq 0$  y sea  $t = \mathrm{e}^{\frac{\mathrm{i}\,\pi}{2p}} \in \mathbb{T}$ . Luego,

$$t^p \neq 1$$
.

Concluimos que p = 0.

# La correspondencia $m \mapsto \omega_m$ es inyectiva

#### Proposición

Sean  $m,n\in\mathbb{Z}$  que satisfacen

$$\omega_{m} = \omega_{n}$$
.

Entonces m = n.

## La correspondencia $m \mapsto \omega_m$ es inyectiva

#### Proposición

Sean  $m,n\in\mathbb{Z}$  que satisfacen

$$\omega_{m}=\omega_{n}.$$

Entonces m = n.

**Demostración.** Sean  $m, n \in \mathbb{Z}$  tales que  $\omega_m = \omega_n$ .

Entonces, para todo t en  $\mathbb{T}$ , se cumple que  $t^m = t^n$ , lo que implica que

$$t^{m-n} = 1.$$

Esta igualdad es válida para todo t en  $\mathbb{T}$ . Por el lema, m-n=0.

# La correspondencia $m \mapsto \omega_m$ es sobre

#### Teorema

Para cada  $\psi$  en  $\widehat{\mathbb{T}}$ , existe m en  $\mathbb{Z}$  tal que

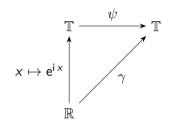
$$\psi = \omega_{m}$$
.

## Demostración, inicio

Sea  $\psi \in \widehat{\mathbb{T}}$ . Definimos  $\gamma \colon \mathbb{R} \to \mathbb{T}$ ,

$$\gamma(x) \coloneqq \psi(\mathsf{e}^{\mathsf{i}\,x}).$$

Entonces,  $\gamma \in \widehat{\mathbb{R}}$ .



Luego, existe un único  $\xi$  en  $\mathbb R$  tal que

$$\psi(\mathrm{e}^{\mathrm{i}\, x})=\mathrm{e}^{2\pi\, \mathrm{i}\, \xi x},$$
 para todo  $x\in\mathbb{R}.$ 

# Demostración, determinamos una forma especial de $\xi$

Hemos mostrado que

$$\psi(e^{ix}) = e^{2\pi i \xi x}$$
  $(x \in \mathbb{R}).$ 

Sea  $x=2\pi$ . Entonces,

$$1 = \psi(1) = \psi(e^{2\pi i}) = e^{(2\pi)^2 \xi i}$$
.

Por la propiedad periódica, existe  $k \in \mathbb{Z}$  tal que  $(2\pi)^2 \xi = 2\pi k$ , esto es

$$\xi = \frac{k}{2\pi}.$$

Notemos que k se determina de manera única porque  $\xi$  ya está determinado y  $k=2\pi\xi$ .

## Demostración, final

Con esto tenemos que

$$\psi(e^{ix}) = (e^{ix})^k \qquad (x \in \mathbb{R}).$$

Recordemos que cada t en  $\mathbb{T}$  se puede representar como  $e^{ix}$  con algún x en  $\mathbb{R}$ .

Finalmente, se cumple que para todo  $t \in \mathbb{T}$ ,

$$\psi(t)=t^k.$$

# Descripción del grupo $\widehat{\mathbb{T}}$

Definimos  $\Omega \colon \mathbb{Z} \to \widehat{\mathbb{T}}$ ,

$$\Omega(m) := \omega_m$$
.

# Descripción del grupo $\widehat{\mathbb{T}}$

Definimos  $\Omega \colon \mathbb{Z} \to \widehat{\mathbb{T}}$ ,

$$\Omega(m) := \omega_m$$
.

#### Teorema

 $\Omega$  es un isomorfismo de grupos.

# Descripción del grupo $\widehat{\mathbb{T}}$

Definimos  $\Omega \colon \mathbb{Z} \to \widehat{\mathbb{T}}$ ,

$$\Omega(m) := \omega_m$$
.

#### Teorema

 $\Omega$  es un isomorfismo de grupos.

Ejercicio: demostrar que

$$\Omega(m+n) = \Omega(m)\Omega(n)$$
.

Ya hemos demostrado que  $\Omega$  es inyectiva y sobre.

## Nota: además, K y $\Omega$ son homeomorfismos

El grupo dual  $\widehat{G}$  se considera con la "topología compacto-abierta".



Ralph H. Fox (1945):

On topologies for function spaces.

https://doi.org/10.1090/S0002-9904-1945-08370-0

Se puede demostrar que K y  $\Omega$  son homeomorfismos.