# Very slowly oscillating functions on the positive half-line

This text is a rough draft.

**Objectives.** Study the C\*-algebra of the bounded functions  $f : \mathbb{R}_+ \to \mathbb{C}$  that are uniformly continuous with respect to the *logarithmic distance* 

$$\rho(x, y) \coloneqq \left| \ln(x) - \ln(y) \right|.$$

**Requirements.** Bounded uniformly continuous functions on a metric space, logarithmic distance  $\rho$  and its properties, uniform deviation  $\Omega_{\rho,f}$  with respect to the logarithmic distance.

#### Bounded uniformly continuous functions on a metric space (review)

In these exercises we suppose that  $(M, \rho)$  is a metric space.

**Exercise 1** (uniform norm = supremum-norm). Let  $f: M \to \mathbb{C}$ . Recall the definition of the supremum-norm:

$$\|f\|_{\infty} \coloneqq$$

**Exercise 2** (uniform deviation of a function defined on a metric space). Let  $(M, \rho)$  be a metric space and  $f: M \to \mathbb{C}$ . Recall the definition:

$$\Omega_{\rho,f}(\delta) \coloneqq$$

**Exercise 3** (bounded uniformly continuous functions on a metric space). Recall the definition:

$$\mathrm{UC}_{\mathrm{b}}(M,\rho) \coloneqq \left\{ f \in \mathbb{C}^M \colon \right\}$$

Very slowly oscillating functions on  $(0, +\infty)$ , page 1 of 6

**Exercise 4** (bounds for arithmetic operations). Let  $f, g \in UC_b(M, \rho)$  and  $\lambda \in \mathbb{C}$ . Recall identities or upper bounds for the supremum-norms and uniform deviations of the functions f + g,  $\lambda f$ , fg and  $\overline{f}$ :

| $\ f+g\ _{\infty} \le$      | $\Omega_{\rho,f+g}(\delta) \le$      |
|-----------------------------|--------------------------------------|
| $\ \lambda f\ _{\infty} =$  | $\Omega_{\rho,\lambda f}(\delta) =$  |
| $\ fg\ _{\infty}$           | $\Omega_{ ho,fg}(\delta)$            |
| $\ \overline{f}\ _{\infty}$ | $\Omega_{\rho,\overline{f}}(\delta)$ |

**Exercise 5.** Let  $f, g: M \to \mathbb{C}$  and  $\delta > 0$ . Write an upper bound for  $\Omega_{\rho,f}(\delta)$  in terms of  $\Omega_{\rho,g}(\delta)$  and  $||f - g||_{\infty}$ . That inequality can be used to prove that  $\mathrm{UC}_{\mathrm{b}}(M,\rho)$  is a closed subset of the set of all bounded functions  $M \to \mathbb{C}$ .

$$\Omega_{\rho,f}(\delta) \leq$$

**Exercise 6.** UC<sub>b</sub> $(M, \rho)$  has the following properties. Indicate with arrows logical relations between of them.

- 1)  $UC_b(M, \rho)$  is closed with respect to the linear operations.
- 2)  $\|\cdot\|_{\infty}$  is a norm.
- 3) UC<sub>b</sub> $(M, \rho)$  is a normed vector space.
- 4) UC<sub>b</sub> $(M, \rho)$  with the distance induced by the norm  $\|\cdot\|_{\infty}$  is a complete metric space.
- 5)  $UC_b(M, \rho)$  is a Banach space.
- 6)  $UC_b(M, \rho)$  is closed with respect to the multiplication.
- 7)  $\|\cdot\|_{\infty}$  is submultiplicative.
- 8) The constant function 1 belongs to  $UC_b(M, \rho)$ , and  $||1||_{\infty} = 1$ .
- 9) UC<sub>b</sub> $(M, \rho)$  is a unital Banach algebra.
- 10) UC<sub>b</sub>( $M, \rho$ ) is closed with respect to the conjugation  $f \mapsto \overline{f}$ .

11) 
$$||ff||_{\infty} = ||f||_{\infty}^2$$
.

12) UC<sub>b</sub> $(M, \rho)$  is a C<sup>\*</sup>-algebra.

Very slowly oscillating functions on  $(0, +\infty)$ , page 2 of 6

### Logarithmic distance on the positive half-line (review)

Exercise 7 (logarithmic distance on the positive half-line). Recall the definition:

 $\rho(x,y) \coloneqq$ 

**Exercise 8.** Let x, y, z > 0. Simplify:

$$\rho(zx, zy) =$$

**Exercise 9** ( $\delta$ -neighborhood of 1).

$$\rho(x,1) < \delta \qquad \Longleftrightarrow \qquad$$

**Exercise 10** ( $\delta$ -neighborhood of x).

Exercise 11.

$$\rho(x,1) \le \delta \qquad \Longleftrightarrow$$

Exercise 12.

### Uniform deviation of functions with respect to the logarithmic distance (review)

**Exercise 13.** Using the result of the Exercise 12 write  $\Omega_{\rho,f}(\delta)$  as a double supremum:



**Exercise 14.** Write  $\Omega_{\rho,f}(\delta)$  in terms of the quotient y/x:



**Definition 1** (standard  $\delta$ -deviation of a function f near a point x). Let  $f \colon \mathbb{R}_+ \to \mathbb{C}$  and  $\delta > 0$ . The  $\Omega_{d,f,x}(\delta)$  is defined by

$$\Omega_{d,f,x}(\delta) \coloneqq \sup \{ |f(x) - f(y)| \colon d(x,y) \le \delta \}.$$

**Exercise 15.** Let  $f \colon \mathbb{R}_+ \to \mathbb{C}, \ \delta > 0$  and x > 0. Compare  $\Omega_{d,f,x}(\delta)$  with  $\Omega_{\rho,f}(\delta)$ .

#### Definition of very slowly oscillating function

Exercise 16. Prove that

$$\mathrm{UC}_{\mathrm{b}}(\mathbb{R}_+,\rho) = \{g \circ \exp: g \in \mathrm{UC}_{\mathrm{b}}(\mathbb{R},d)\}.$$

**Definition 2** (very slowly oscillating functions). Denote by  $VSO(\mathbb{R}_+)$  the following set:

 $\mathrm{VSO}(\mathbb{R}_+) \coloneqq \mathrm{UC}_\mathrm{b}(\mathbb{R}_+, \rho) = \big\{ g \circ \exp\colon \ g \in \mathrm{UC}_\mathrm{b}(\mathbb{R}, d) \big\}.$ 

**Exercise 17.** Prove that  $VSO(\mathbb{R}_+)$  is a subset of  $C_b(\mathbb{R}_+)$ .

#### Examples

**Exercise 18.** Determine whether  $f \in VSO(\mathbb{R}_+)$ , where

 $f: \mathbb{R}_+ \to \mathbb{C}, \qquad f(x) \coloneqq \cos(\ln(x)).$ 

**Exercise 19.** Determine whether  $f \in VSO(\mathbb{R}_+)$ , where

$$f \colon \mathbb{R}_+ \to \mathbb{C}, \qquad f(x) \coloneqq \cos\left(\sqrt{x}\right).$$

## Comparison with the $C^*$ -algebra of the continuous functions having finite limits at 0 and $+\infty$

**Definition 3** (a distance on  $[0, +\infty]$  inducing the standard topology). The standard topology on  $[0, +\infty]$  can be induced by the distance

$$d_{[0,+\infty]}(x,y) \coloneqq \left| \zeta(x) - \zeta(y) \right|_{\mathcal{S}}$$

where

| $\zeta(x) \coloneqq \begin{cases} \frac{x}{x+1}, \\ 1, \end{cases}$ | $\frac{x}{x+1},  x$ | $\in [0, +\infty);$ |
|---------------------------------------------------------------------|---------------------|---------------------|
|                                                                     | ., <i>x</i>         | $=+\infty$ .        |

**Exercise 20.** Let  $x, y \in \mathbb{R}_+$ . Compare  $d_{[0,+\infty]}(x,y)$  with  $\rho(x,y)$ .

**Exercise 21.** Let  $f : \mathbb{R}_+ \to \mathbb{C}$  and  $\delta > 0$ . Compare:

$$\Omega_{d_{[0,+\infty]},f}(\delta) \underbrace{\qquad}_{?} \Omega_{\rho,f}(\delta).$$

**Definition 4.** Given a function  $f \colon \mathbb{R}_+ \to \mathbb{C}$ , the following conditions are equivalent:

- (a)  $f \in C(\mathbb{R}_+)$  and f have finite limits at  $0^+$  and  $+\infty$ .
- (b) f can be prolonged to a continuous function  $[0, +\infty] \to \mathbb{C}$ .
- (c) f can be prolonged to a uniformly continuous function  $[0, +\infty] \to \mathbb{C}$ .
- (d) f is uniformly continuous with respect to the distance  $d_{[0,+\infty]}$ .

The set of these functions will be denoted by  $C([0, +\infty])$ .

**Exercise 22.** Compare VSO( $\mathbb{R}_+$ ) with  $C([0, +\infty])$ :

$$VSO(\mathbb{R}_+)$$
  $\underbrace{\qquad}_?$   $C([0,+\infty]).$ 

Very slowly oscillating functions on  $(0, +\infty)$ , page 6 of 6