Vertical Toeplitz operators on the Bergman space on the upper half-plane and very slowly oscillating functions on the positive half-line

This theme is planned to be written in some weeks. The actual text is just a rough draft.

Objectives. Prove that the set of functions

$$\Gamma := \{ \gamma_a \colon \ a \in L^{\infty}(\mathbb{R}_+) \},\$$

where

$$\gamma_a(x) := 2x \int_0^{+\infty} a(v) e^{-2vx} dv,$$

is dense in the algebra $VSO(\mathbb{R}_+)$ of the very slowly oscillating functions:

$$VSO(\mathbb{R}_+) := \Big\{ f \colon \mathbb{R}_+ \to \mathbb{C} \colon \sup_{x \in \mathbb{R}_+} |f(x)| < +\infty \quad \land \quad \lim_{\frac{x}{y} \to 1} |f(x) - f(y)| = 0 \Big\}.$$

Requirements. Definition of VSO(\mathbb{R}_+) through the logarithmic distance ρ :

$$\rho(x,y) := |\ln(x) - \ln(y)|,$$

basic properties of the functions ϕ_n and ψ_n defined by the following formulas:

$$\phi_n(v) := \frac{1}{\left((n-1)!\right)^2} \frac{d^{n-1}}{dv^{n-1}} \left(e^{-v} \ v^{2n-1} \right), \qquad \psi_n(t) := \int_0^{+\infty} e^{-vt} \ \phi_n(v) \ dv.$$

Logarithmic distance on the positive half-line (review)

Exercise 1 (logarithmic distance). Recall the definition of $\rho(x,y)$:

$$\rho(x,y) :=$$

Exercise 2. Prove that the logarithmic distance is dilation-invariant:

$$\rho(tx, ty) =$$

Exercise 3. Compare the logarithmic distance with another dilation-invariant distance:

$$\rho(x,y) \underbrace{\qquad}_{\leq \text{ or } \geq} \frac{|x-y|}{\max(x,y)}.$$

Exercise 4 (δ -neighborhood of 1). Find the δ -neighborhood of 1 with respect to the distance ρ :

$$\rho(x,1) < \delta \iff$$

Very slowly oscillating functions on the positive half-line (review)

Exercise 5 (uniform deviation of a function with respect to the logarithmic distance). Let $f: \mathbb{R}_+ \to \mathbb{C}$ and $\delta > 0$. Write the definition and various descriptions of $\Omega_{\rho,f}(\delta)$.

Exercise 6 (very slowly oscillating functions). Write the definition of $VSO(\mathbb{R}_+)$.

Special approximate unit (review)

Exercise 7. Recall the definition of the function ϕ_n :

$$\phi_n(v) =$$

Exercise 8. Recall an explicit formula for the function ϕ_n (without derivatives):

$$\phi_n(v) = \sum_{n} \phi_n(v)$$

Exercise 9. Calculate:

$$\lim_{v \to 0^+} \phi_n(v) = \lim_{v \to +\infty} \phi_n(v) =$$

Exercise 10. Recall the explicit formula for the function ψ_n :

$$\psi_n(t) =$$

Exercise 11. Calculate the integral:

$$\int_{0}^{+\infty} \psi_n(t) \, dt =$$

Exercise 12. Let $\delta > 0$. Calculate the limit:

$$\lim_{n \to \infty} \int_{0}^{\mathrm{e}^{-\delta}} \psi_n(t) \, dt =$$

Exercise 13. Let $\delta > 0$. Make the change of variables $s = \frac{1}{t}$ in the following integral:

$$\int_{e^{\delta}}^{+\infty} \psi_n(t) \, dt =$$

Exercise 14. Let $\delta > 0$. Calculate the limit:

$$\lim_{n \to \infty} \int_{e^{\delta}}^{+\infty} \psi_n(t) \, dt =$$

Definition 1. Let $\delta > 0$. Denote by $R_{n,\delta}$ the following integral:

$$R_{n,\delta} := \int_{\substack{x>0\\\rho(x,1)>\delta}} \psi_n(t) dt.$$

Exercise 15. Write $R_{n,\delta}$ as a sum of some integrals with explicit limits of integration:

$$R_{n,\delta} = \int \psi_n(t) dt + \int \psi_n(t) dt.$$

Exercise 16. Let $\delta > 0$. Calculate the limit:

$$\lim_{n\to\infty} R_{n,\delta} =$$

Gammas belong to $VSO(\mathbb{R}_+)$

The following two exercises show that the following set Γ is a subset of $VSO(\mathbb{R}_+)$.

$$\Gamma \coloneqq \left\{ \gamma_a \colon \ a \in L^{\infty}(\mathbb{R}_+) \right\}$$

In fact, these results motivated the definition of the class $VSO(\mathbb{R}_+)$.

Exercise 17. Let $x \in \mathbb{R}_+$. Calculate the integrals:

$$2x \int_{\mathbb{R}_+} e^{-2xv} dv = \qquad \qquad 2x^2 \int_{\mathbb{R}_+} v e^{-2xv} dv =$$

Exercise 18. Let $a \in L^{\infty}(\Pi)$. Prove that γ_a is bounded.

$$|\gamma_a(x)| \leq$$

Exercise 19. Let $x, y \in \mathbb{R}_+$, x < y. Apply the Mean Value Theorem to the function $t \mapsto e^{-t}$:

$$e^{-x} - e^{-y} \le \left(\sup_{x < t < y} \left(e^{-t}\right)'\right)(y - x) = \left(\sup_{x < t < y} \underbrace{\hspace{1cm}}\right)(y - x) = \underbrace{\hspace{1cm}}_{\gamma}(y - x).$$

Exercise 20. Let $a \in L^{\infty}(\Pi)$. Prove that γ_a is Lipschitz-continuous with respect to the logarithmic distance ρ .

Gammas are dense in $VSO(\mathbb{R}_+)$

Exercise 21. Let $n \in \{1, 2, ...\}$, x > 0, y > 0. Using an appropriate change of variables express the following integral in terms of ψ_n :

$$2x \int_{0}^{+\infty} \frac{\phi_n(2vy)}{y} e^{-2xv} dv =$$

Then use the formula for ψ_n and write the result in an explicit form:

$$2x \int_{0}^{+\infty} \frac{\phi_n(2vy)}{y} e^{-2xv} dv =$$

Exercise 22. Let $\sigma \in VSO(\mathbb{R}_+)$ and $n \in \{1, 2, \ldots\}$. Define $a_n \in L^{\infty}(\mathbb{R}_+)$ by

$$a_n(v) := \int_0^{+\infty} \sigma(y) \frac{\phi_n(2vy)}{y} \, dy. \tag{1}$$

Applying Fubini's theorem and the result of Exercise 21 calculate γ_{a_n} :

$$\gamma_{a_n}(x) =$$

Exercise 23. Let $\sigma \in VSO(\mathbb{R}_+)$ and $n \in \{1, 2, ...\}$. Define a_n by (1). Find an upper bound for $\|\gamma_{a_n} - \sigma\|_{\infty}$ in terms of $\Omega_{\rho,\sigma}$, $\|\sigma\|_{\infty}$ and $R_{n,\delta}$.

$$|\gamma_{a_n}(x) - \sigma(x)| \le$$

