A special approximate unit

Objectives. Study some basic properties of the functions ϕ_n and their Laplace transforms ψ_n . Here ϕ_n is defined on \mathbb{R}_+ by

$$\phi_n(v) := \frac{1}{((n-1)!)^2} \frac{d^{n-1}}{dv^{n-1}} (e^{-v} v^{2n-1}).$$

Requirements. Gamma and beta functions and their basic properties, basic integration tecnics (change of variables and integration by parts), associated Laguerre polynomials, Laplace transform of the function $(e^{-t} t^m)^{(k)}$.

Definition of ϕ_n

Denote $(0, +\infty)$ by \mathbb{R}_+ .

Definition 1. For all $n \in \{1, 2, ...\}$ define the function ϕ_n on \mathbb{R}_+ by

$$\phi_n(v) := \frac{1}{((n-1)!)^2} \frac{d^{n-1}}{dv^{n-1}} \left(e^{-v} \ v^{2n-1} \right). \tag{1}$$

Exercise 1. Calculate the first derivative of e^{-v} v^n :

$$\frac{d}{dv}\left(e^{-v}v^n\right) =$$

Exercise 2. Calculate $\phi_1(v)$.

Exercise 3. Calculate $\phi_2(v)$. Factorize e^{-v} and the maximal possible power of v.

Exercise 4. Calculate $\phi_3(v)$. Factorize e^{-v} and the maximal possible power of v.

Functions ϕ_n and associated Laguerre polynomials

Exercise 5. Find the Rodrigues representation of the associated Laguerre polynomials (= generalized Laguerre polynomials = Sonine polynomials):

$$L_m^k(v) = \frac{d^m}{dv^m} \left(e^{-v} \right). \tag{2}$$

Find also the explicit formula for the associated Laguerre polynomials:

$$L_m^k(v) = \sum (3)$$

Exercise 6. Comparing the definition (1) of ϕ_n with (2) express ϕ_n through some associated Laguerre polynomial.

$$\phi_n(v) = \tag{4}$$

Exercise 7. Calculate the limits:

$$\lim_{v \to 0^+} \phi_n(v) =$$

$$\lim_{v \to +\infty} \phi_n(v) =$$

Exercise 8. Prove that ϕ_n is bounded on \mathbb{R}_+ .

Some basic properties of the gamma function (review)

Exercise 9. Recall the definition of the gamma function:

$$\Gamma(x) := \int_{0}^{+\infty} \underbrace{dt.}$$

Exercise 10. Integrating by parts express $\Gamma(x+1)$ through $\Gamma(x)$:

$$\Gamma(x+1) =$$

Exercise 11. Compute $\Gamma(1)$:

$$\Gamma(1) = \int_{0}^{+\infty}$$

Exercise 12. Express $\Gamma(n)$ through the factorial function for $n \in \{1, 2, 3, \ldots\}$.

$$\Gamma(n) =$$

Exercise 13. Let a > 0 and p > 0. Express the following integral through the gamma function (make a suitable change of variables):

$$\int_{0}^{+\infty} x^{p} e^{-ax} dx =$$

Some basic propierties of the beta function (review)

Exercise 14. Recall the definition of the beta function:

$$B(x,y) := \int_{0}^{1} \underbrace{du.}_{2}$$

Exercise 15. Recall the formula that expresses the beta function through the gamma function:

$$B(x,y) = -----$$

Exercise 16. Let $p, q \in \{1, 2, 3, \ldots\}$. Using the formula from the previous exercise express B(p, q) through some factorials.

$$B(p,q) =$$

Exercise 17. Using a suitable change of variables write B(x,y) as an integral of the following form:

$$B(x,y) = \int_{0}^{+\infty} \frac{t^{?}}{(1+t)^{?}} dt.$$

Exercise 18. Express the following integral through the beta function:

A special approximate unit, page 4 of 8

Laplace transform of the function $(e^{-t} t^m)^{(k)}$ (review)

Exercise 19. Recall the definition of the Laplace transform $\mathcal{L}(f)$ of a function f:

$$(\mathcal{L}(f))(s) := \int dt.$$

Exercise 20. Calculate the Laplace transform of the function e^{-t} t^m :

$$\int e^{-t} t^m \qquad dt =$$

Exercise 21. Put $h(t) := e^{-t} t^m$. Let $k \in \{0, 1, ..., m-1\}$ Express the $h^{(k)}$ through a certain associated Laguerre polynomial.

Exercise 22. Let $k \in \{0, 1, \dots, m-1\}$. Calculate the limits:

$$\lim_{s\to 0^+}h^{(k)}(s)=\lim_{s\to +\infty}h^{(k)}(s)=$$

Exercise 23. Let $k \in \{0, 1, ..., m-1\}$. Calculate the Laplace transform of $h^{(k)}$:

$$\int \left(e^{-t} t^m\right)^{(k)} dt =$$

$\psi_n \coloneqq \text{the Laplace transform of } \phi_n$

Recall the definition of ϕ_n :

$$\phi_n(v) := \frac{1}{((n-1)!)^2} \frac{d^{n-1}}{dv^{n-1}} (e^{-v} v^{2n-1}).$$

Definition 2. For each $n \in \{1, 2, ...\}$ define the function $\psi_n : \mathbb{R}_+ \to \mathbb{R}$ as the Laplace transform of the function ϕ_n :

$$\psi_n(t) := \int_0^{+\infty} \phi_n(v) e^{-vt} dv.$$
 (5)

Exercise 24. Calculate ψ_1 .

Exercise 25. Calculate ψ_2 .

Exercise 26. Calculate ψ_3 .

Some properties of ψ_n

Exercise 29. Let $n \in \{1, 2, 3, \ldots\}$. Calculate the integral of ψ_n on \mathbb{R}_+ :

$$\int_{0}^{+\infty} \psi_n(t) dt =$$

Exercise 30. To verify the result of the previous exercise, calculate the following integral:

$$\int_{0}^{+\infty} \psi_1(t) \, dt =$$

Exercise 31. Let $\delta > 0$. Prove that

$$\lim_{n \to \infty} \sup_{0 < t \le e^{-\delta}} \psi_n(t) = 0.$$

Exercise 32. Let $\delta > 0$. Calculate the limit:

$$\lim_{n \to \infty} \int_{0}^{\mathrm{e}^{-\delta}} \psi_n(t) \, dt =$$

Exercise 33. Let $\delta > 0$. Make the change of variables $s = \frac{1}{t}$ in the following integral:

$$\int_{e^{\delta}}^{+\infty} \psi_n(t) \, dt =$$

Exercise 34. Let $\delta > 0$. Calculate the limit:

$$\lim_{n \to \infty} \int_{(0,e^{-\delta}) \cup (e^{\delta},+\infty)} \psi_n(t) dt =$$