Orthogonality of the monomials with respect to the weighted measure on the unit disk

Definition 1 (weighted measure on the unit disk). Denote by dv = dx dy the standard Lebesgue plane measure, and by μ_{α} the following weighted measure:

$$d\mu_{\alpha}(z) = \frac{\alpha+1}{\pi} (1-|z|^2)^{\alpha} dv(z).$$

Objectives. Prove that $\mu_{\alpha}(\mathbb{D}) = 1$ and calculate the inner products of the monomial functions z^n in the space $L^2(\mathbb{D}, d\mu_{\alpha})$.

Requirements. Exponential of complex arguments, change of variables in area integral, polar change of variables, beta function.

Unit circle in the complex plane

Exercise 1. Let $\varphi \in \mathbb{R}$. Using the Euler's formula express $e^{i\varphi}$ through $\cos(\varphi)$ and $\sin(\varphi)$:

$${\rm e}^{{\rm i}\,\varphi} =$$

Exercise 2. Recall the geometrical meaning of $e^{i\varphi}$ (draw in the picture).

Exercise 3. Let $\varphi \in \mathbb{R}$. Recall the formula: $\overline{e^{i\varphi}} =$

Exercise 4. Let $k \in \mathbb{Z}$. Calculate: $e^{2k\pi i} =$

Orthogonality of the monomials in $L^2(\mathbb{D}, d\mu_{\alpha})$, page 1 of 4

Polar coordinates

Exercise 5. Consider the polar change of variables:

$$\begin{bmatrix} x(r,\varphi) \\ y(r,\varphi) \end{bmatrix} = \begin{bmatrix} r\cos(\varphi) \\ r\sin(\varphi) \end{bmatrix}.$$

Calculate the Jacobian of the polar change of variables:

$$\left|\begin{array}{cc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} \end{array}\right| =$$

Exercise 6. Passing to the polar coordinates one must substitute dv(z) = dx dy by

Exercise 7. Let z = x + iy. Write the following expressions in terms of the polar coordinates:

 $z = \qquad \overline{z} = \qquad |z| = \qquad |z|^2 =$

Exercise 8. Write the weighted measure in the explicit manner and pass to the polar coordinates in the following integral (since f is a general function, it is not possible to calculate or simplify very much the integral):

$$\int_{\mathbb{D}} f(z) \, d\mu_{\alpha}(z) =$$

Exercise 9. Prove that $\mu_{\alpha}(\mathbb{D}) = 1$:

$$\mu_{\alpha}(\mathbb{D}) = \int_{\mathbb{D}} d\mu_{\alpha}(z) =$$

Orthogonality of the monomials in $L^2(\mathbb{D}, d\mu_{\alpha})$, page 2 of 4

Orthonormal Fourier basis in $L^2\left([0,2\pi],rac{dx}{2\pi} ight)$

Definition 2. For each $k \in \mathbb{Z}$, denote by $f_k : [0, 2\pi] \to \mathbb{C}$ the function defined by: $f_k(\varphi) := e^{k i \varphi}.$

Exercise 10. Let $k \in \mathbb{Z}$. Recall the formula for the derivative of f_k :

$$f_k'(\varphi) =$$

Exercise 11. Let $k \in \mathbb{Z} \setminus \{0\}$. Find an antiderivative of f_k :

$$\left(\underbrace{\qquad}_{?}\right)' = e^{k \, \mathrm{i} \, \varphi} \, .$$

Exercise 12. Let $k \in \mathbb{Z} \setminus \{0\}$. Calculate the integral:

$$\frac{1}{2\pi}\int\limits_{0}^{2\pi}f_k(\varphi)\,d\varphi=$$

Exercise 13. Let k = 0. Calculate the integral:

$$\frac{1}{2\pi}\int\limits_{0}^{2\pi}f_k(\varphi)\,d\varphi=$$

Exercise 14. Let $k \in \mathbb{Z}$. Write a general formula:

$$\frac{1}{2\pi} \int_{0}^{2\pi} f_k(\varphi) \, d\varphi =$$

Exercise 15. Let $m, n \in \mathbb{Z}$. Calculate the integral:

$$\frac{1}{2\pi}\int_{0}^{2\pi}f_m(x)\overline{f_n(x)}\,dx =$$

Orthogonality of the monomials in $L^2(\mathbb{D}, d\mu_{\alpha})$, page 3 of 4

Orthogonality of the monomials in $L^2(\mathbb{D},d\mu_lpha)$

Denote the set $\{0, 1, 2, \ldots\}$ by \mathbb{N}_0 .

Exercise 16. Let $m, n \in \mathbb{N}_0, m \neq n$. Calculate the integral:

$$\int_{\mathbb{D}} z^m \overline{z^n} \, d\mu_\alpha(z) =$$

Definition of the beta function

Exercise 17. Recall the definition of the beta function:

$$\mathbf{B}(x,y) \coloneqq \int_{0}^{1} \underbrace{\qquad}_{?} dt.$$

Exercise 18. Express the following integral in terms of the beta function:

$$\int_{0}^{1} t^{\alpha} \left(1-t\right)^{\beta} dt = \underbrace{\qquad}_{?}$$

Norms of the monomials in $L^2(\mathbb{D},d\mu_lpha)$

Exercise 19. Express the following integral in terms of the beta function:

$$\int_{0}^{1} (1 - r^2)^{\alpha} r^{2\beta} d dr =$$

Exercise 20. Let $n \in \mathbb{N}_0$. Calculate the integral:

$$\int_{\mathbb{D}} z^n \overline{z^n} \, d\mu_\alpha(z) =$$

Orthogonality of the monomials in $L^2(\mathbb{D}, d\mu_{\alpha})$, page 4 of 4