
Intertibility and spectrum
of the multiplication operator

on the space of square-summable sequences

Objectives. Establish an invertibility criterion and calculate the spectrum of the multi-
plication operator on the space `2.

Requirements. Space `2, canonical basis of `2, multiplication operator on `2 and its
norm, algebraic operations (sum, product by a scalar and product) of two multiplication
operators on `2, closure of a set in a metric space, bounded linear operators, norm of
a bounded linear operator, invertibility of diagonal matrices, invertibility of a bounded
linear operator, spectrum of a bounded linear operator.

Denote by N0 the set of the natural numbers starting with zero:

N0 := {0, 1, 2, . . .}.

Definition 1 (the space of the square-summable sequences of complex numbers).

`2 := `2(N0) :=

{
x ∈ CN0 :

∑
j

xj︸ ︷︷ ︸
?

}
.

The space `2 is a Hilbert space with respect to the inner product

〈x, y〉 :=
∑
j∈N0

xj yj.

This inner product is linear with respect to the second argument. Many authors define
the inner product to be linear with respect to the first argument.

Definition 2 (the space of the bounded sequences of complex numbers).

`∞ := `∞(N0) :=

{
x ∈ CN0 : ︸ ︷︷ ︸

?

}
.
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Canonical basis of `2 (review)

Definition 3 (canonical basis of `2). For every n ∈ N0, denote by en the sequence

en :=
(
δn,j
)
j∈N0

.

In the following exercises we shall see that (en)n∈N0 is an orthonormal basis of `2.

Exercise 1. Write the sequence e2: e2 =
( ︸︷︷︸

?

, ︸︷︷︸
?

, ︸︷︷︸
?

, ︸︷︷︸
?

, ︸︷︷︸
?

, . . .
)
.

Exercise 2. Write the following sequences:

−3e0 =
(

, , , , , . . .
)
,

7e1 =
(

, , , , , . . .
)
,

4e0 − 5e3 =
(

, , , , , . . .
)
.

Exercise 3. Write the following sequences in terms of the basic elements en:

(
0, 0, 0, 5, 0, . . .

)
= ︸ ︷︷ ︸

?

,
(
2, 0,−4, 0, 0, . . .

)
= ︸ ︷︷ ︸

?

.

Exercise 4 (orthonormality of the canonical basis). Let m,n ∈ N0. Calculate the prod-
uct:

〈em, en〉 =
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Exercise 5 (norm of an element of the canonical basis). Let n ∈ N0. Calculate the norm
of en:

‖en‖2 = ︸ ︷︷ ︸
?

.

Exercise 6 (norm of a multiple of an element of the canonical basis). Let n ∈ N0 and
λ ∈ C. Calculate the norm of λen:

‖λen‖2 = ︸ ︷︷ ︸
?

.

Exercise 7. Let x ∈ `2 and n ∈ N0. Calculate:

〈en, x〉 =

Exercise 8. Suppose that x ∈ `2 and 〈en, x〉 = 0 for all n ∈ N0. Then

︸ ︷︷ ︸
?

According to general criteria of orthonormal basis in a Hilbert space, it implies that the
sequence (en)n∈N0 is an orthonormal basis of `2.

Exercise 9. Let x ∈ `2. Write the decomposition of x in the basis (en)n∈N0 :

x =
∑
n∈N0

︸ ︷︷ ︸
?

en.

Exercise 10. Let x ∈ `2 and m ∈ N0 such that

∀n ∈ N0 \ {m} 〈en, x〉 = 0.

What can you say about x? Write x in terms of some basic elements en and some inner
products.
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Definition of the multiplication operator (review)

Exercise 11 (component-wise product of sequences, review). Let x, y ∈ CN0 . Write the
definition of the component-wise product of the sequences x and y:

∀n ∈ N0 (xy)n := ︸ ︷︷ ︸
?

.

In other words,
xy :=

( ︸ ︷︷ ︸
?

)
n∈N0

.

Exercise 12 (definition of the multiplication operator, review). Let a ∈ `∞. Define
Ma : `2 → `2 by

Max := ︸ ︷︷ ︸
?

,

that is,
∀x ∈ `2 ∀j ∈ N0 (Max)j := ︸ ︷︷ ︸

?

.

Exercise 13 (action of the multiplication operator on the canonical basis, review). Let
a ∈ `∞ and n ∈ N0. Calculate Maen.

Exercise 14. Let a ∈ `∞ and n ∈ N0. Calcule the `2-norm of the sequence Maen:

‖Maen‖2 = ︸ ︷︷ ︸
?

.

Invertibility and spectrum of the multiplication operator on `2, page 4 of 14



Supremum and infimum (review)

Definition 4. Denote by R the extended real line R ∪ {−∞,+∞} with the canonical
order. The additional elements −∞ and +∞ satisfy

∀α ∈ R −∞ < a, ∀α ∈ R α < +∞, −∞ < +∞.

Exercise 15 (upper bound of a set of real numbers). Let A ⊂ R and β ∈ R. Recall the
definition:

β is an upper bound of A ⇐⇒ ︸ ︷︷ ︸
?

Exercise 16. Let A ⊂ R and γ ∈ R. Then,

γ is not an upper bound of A ⇐⇒ ︸ ︷︷ ︸
?

Exercise 17. Let A ⊂ R and β ∈ R. What does mean the phrase “β is the supremum
of A”? Write the definition using the concept of the upper bounds. (It is known that for
every A ⊂ R there exists a unique supremum in R. We shall not prove this fact here.)

β = sup(A) ⇐⇒

Exercise 18. Let A ⊂ R and β ∈ R. What does mean the phrase “β is the supremum of
A”? Write the answer in terms of the quantifications ∀ and ∃ and some of the inequalities
<,>,≤,≥, without mentioning explicitly the concept of upper bounds.

β = sup(A) ⇐⇒


1) ∀α ∈ A . . .

2) ∀γ < β . . .

Exercise 19. Let x = (xn)n∈N0 be a sequence in R and β ∈ R. What does mean the phrase
“β is the supremum of the sequence x”? Write the answer in terms of the quantifications
∀ and ∃ and some of the inequalities <,>,≤,≥.

β = sup
n∈N0

xn ⇐⇒


1) ∀n ∈ N0 . . .

2)
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Multiplication operator:

boundness and norm (review)

Exercise 20 (definition of the supremum norm, review). Let a ∈ `∞. Put

ν := ‖a‖∞ = sup
n∈N0

|an|.

Write the definition of ν using the quantifications ∀ and ∃ and some of the inequalities
<,>,≤,≥, without mentioning explicitly the concept of upper bounds.

Exercise 21 (idea of the upper bound for the norm of the multiplication operator, re-
view). Let a ∈ `∞ and x ∈ `2. Write an upper bound for the norm of Max.

‖Max‖2 ≤ ︸ ︷︷ ︸
?

.

Exercise 22 (idea of the lower bound for the norm of the multiplication operator, review).
Let a ∈ `∞. Compare ‖Ma‖ to ‖Maen‖2.

Exercise 23 (norm of the multiplication operator, review). Let a ∈ `∞. Then

‖Ma‖ = ︸ ︷︷ ︸
?

.
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Algebraic operations

with multiplication operators, review

In the following exercises recall that the set of the multiplication operators is closed under
algebraic operations: for example, the sum of two multiplication operators results to be
also a multiplication operator.

Exercise 24 (sum of two multiplication operators, review). Let a, b ∈ `∞. Then

Ma +Mb = ︸ ︷︷ ︸
?

.

Exercise 25 (product of a multiplication operator by a scalar, review). Let a ∈ `∞ and
λ ∈ C. Then

λMa = ︸ ︷︷ ︸
?

.

Exercise 26 (product of two multiplication operators). Let a, b ∈ `∞. Then

MaMb = ︸ ︷︷ ︸
?

.

Exercise 27 (adjoint to the multiplication operator). Let a ∈ `∞. Then

M∗
a = ︸ ︷︷ ︸

?

.

Exercise 28 (identity operator as a multiplication operator). Denote by I the identity
operator on the space `2. Find a function a such that Ma = I.
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Range and closed range of a sequence

Exercise 29 (definition of the closure of a set in a metric space, review). Let (X, d)
be a metric space, A ⊂ X and β ∈ X. What does mean the phrase “β is a point of
closure of A” (in other words, “β is an adherent point of A”)? Write the definition using
quantifications and inequalities:

b ∈ clos(A) ⇐⇒

Definition 5 (range and closed range of a sequence of complex numbers). Let a : N0 → C.
Denote by R(a) the range (the set of the values) of a:

R(a) :=
{
z ∈ C : ∃n ∈ N0 z = an

}
and by CR(a) the closure of the range of a:

CR(a) := clos(R(a)).

Exercise 30. Let a : N0 → C. Write the definition of CR(a) using quantifications and
inequalities:

w ∈ CR(a) ⇐⇒

Exercise 31 (example). Consider a sequence a : N0 → C is defined by

an =
(
1 + (−1)n

) n

n+ 1
.

Calculate some first components of a.

a =

(
, , , , , . . .

)
.

Find R(a) and CR(a).

Invertibility and spectrum of the multiplication operator on `2, page 8 of 14



Injectivity and kernel of a linear operator (review)

Exercise 32 (definition of injective function). Let X, Y be some sets and f : X → Y be
a function. What does mean the phrase “f is injective”?

Exercise 33 (definition of the kernel of a linear operator). Let T : `2 → `2 be a linear
operator. Then the kernel (called also the null-space) of T is defined by:

ker(T ) :=
{
x ∈ `2 : ︸ ︷︷ ︸

?

}
.

Exercise 34 (criterium of the injectivity of linear operator). Let T : `2 → `2 be a linear
operator. Prove that

T is injective ⇐⇒ ker(T ) = {0}.

Exercise 35 (the kernel of a bounded linear operator is closed). Let T : `2 → `2 be a
bounded linear operator. Prove that its kernel ker(T ) is a closed set (in the sense of the
norm in `2).
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Invertibility of a bounded linear operator (review)

Exercise 36. Let T : `2 → `2 be a bounded linear operator. It is said that T is invertible
if there exists a bounded linear operator S : `2 → `2 such that

︸ ︷︷ ︸
?

It is known that if there exists such operator S, then it is unique. In the case of existence,
S is called the inverse operator to T and is denoted by T−1.

Exercise 37. Let T : `2 → `2 be an invertible bounded linear operator. Prove that T is
injective.

Exercise 38. Let T : `2 → `2 be an invertible bounded linear operator. Prove that for
all x ∈ `2,

‖Tx‖2 ≥ ‖T−1‖−1‖x‖2.

Exercise 39. Let T : `2 → `2 be a bounded linear operator. Suppose that for all ε > 0
there exists a sequence x ∈ `2 such that ‖x‖2 = 1 and ‖Tx‖2 < ε. Prove that T is not
invertible.
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Invertibility of diagonal matrices (review)

The following exercises help to review some ideas useful to study the invertibility of the
multiplication operator.

Exercise 40 (diagonal matrix as a multiplication operator, review). Let a ∈ C3. Denote
the components of a by a0, a1, a2. Denote by diag(a) the diagonal matrix with diagonal
entries a0, a1, a2:

diag(a) :=

 a0 0 0
0 a1 0
0 0 a2

 .
Calculate the product of diag(a) by a general vector x ∈ C3:

diag(a)x =

 a0 0 0
0 a1 0
0 0 a2

 x0
x1
x2

 =

Write the answer in a short form: diag(a)x =
[ ︸ ︷︷ ︸

?

]2
j=0

.

Exercise 41 (invertibility of a diagonal matrix, review). Let a ∈ C3. Recall the criterim
of the invertibility of the diagonal matrix diag(a):

diag(a) is invertible ⇐⇒ ︸ ︷︷ ︸
?

.

Exercise 42 (inverse to the diagonal matrix, review). Let a ∈ C3 such that diag(a) is
invertible. Write the formula for the inverse matrix:

diag(a)−1 =




.

Using the notation 1/a = (1/a0, 1/a1, 1/a2) write the result in a short form:

diag(a)−1 = ︸ ︷︷ ︸
?

.
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Invertibility of the multiplication operator

Exercise 43. Let a ∈ `∞. Prove that the following conditions are equivalent:

0 /∈ CR(a) ⇐⇒ inf
j∈N0

|aj| > 0.

Exercise 44. Let a ∈ `∞ such that 0 /∈ CR(a). Prove that Ma is invertible. (Construct
the inverse operator.)

Exercise 45. Let a ∈ `∞ such that 0 ∈ R(a). Prove that Ma is not injective and therefore
not invertible.

Exercise 46. Let a ∈ `∞ such that 0 ∈ CR(a). Prove that for all ε > 0 there exists a
sequence x ∈ `2 such that ‖x‖2 = 1 and

‖Max‖2 < ε.

Exercise 47. Let a ∈ `∞ such that 0 ∈ CR(a). Prove that Ma is not invertible.

Exercise 48. Let a ∈ `∞. Write a criterion:

Ma is invertible ⇐⇒
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Spectrum of the multiplication operator

Exercise 49. Let A be a bounded linear operator in a complex Banach space X. Recall
the definition of the spectrum of A.

Sp(A) :=

{
λ ∈ C :

}
.

Exercise 50. Let a ∈ `∞. Find the spectrum of Ma.

Exercise 51. Let A be a bounded linear operator in a complex Banach space X and
λ ∈ C. What does mean the condition “λ is an eigenvalue of A?

Exercise 52. Let A be a bounded linear operator in a complex Banach space X and
λ ∈ C. Recall the definition of the point spectrum of A:

Spp(A) :=

{
λ ∈ C :

}
.

Exercise 53. Let a ∈ `∞. Find the point spectrum of the multiplication operator Ma.

Exercise 54 (spectrum of the multiplication operator in terms of its point spectrum).
Let a ∈ `∞. Express Sp(Ma) in terms of Spp(Ma).
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Multiplication operator and canonical basis

Exercise 55. Let a ∈ `∞, x ∈ `2 and n ∈ N0. Calculate:

〈en,Max〉 =

Exercise 56. Let a ∈ `∞ and x ∈ `2. Prove that

Max =
∑
j∈N0

aj〈ej, x〉 ej.

Exercise 57. Let a ∈ `∞ and j ∈ N0. Calculate:

〈ej,Maej〉 =

Exercise 58. Let a ∈ `∞ and the sequence (λj)j∈N0 is defined by:

∀j ∈ N0 λj := 〈ej,Maej〉.

Express a through λj.

Exercise 59. Let a ∈ `∞ and j, k ∈ N0 such that j 6= k. Calculate:

〈ej,Maek〉 =
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