Intertibility and spectrum of the multiplication operator on the space of square-summable sequences

Objectives. Establish an invertibility criterion and calculate the spectrum of the multiplication operator on the space ℓ^2 .

Requirements. Space ℓ^2 , canonical basis of ℓ^2 , multiplication operator on ℓ^2 and its norm, algebraic operations (sum, product by a scalar and product) of two multiplication operators on ℓ^2 , closure of a set in a metric space, bounded linear operators, norm of a bounded linear operator, invertibility of diagonal matrices, invertibility of a bounded linear operator, spectrum of a bounded linear operator.

Denote by \mathbb{N}_0 the set of the natural numbers starting with zero:

$$\mathbb{N}_0 := \{0, 1, 2, \ldots\}.$$

Definition 1 (the space of the square-summable sequences of complex numbers).

$$\ell^2 := \ell^2(\mathbb{N}_0) := \left\{ x \in \mathbb{C}^{\mathbb{N}_0} : \sum_j x_j \right\}.$$

The space ℓ^2 is a Hilbert space with respect to the inner product

$$\langle x, y \rangle \coloneqq \sum_{j \in \mathbb{N}_0} \overline{x_j} y_j.$$

This inner product is linear with respect to the second argument. Many authors define the inner product to be linear with respect to the first argument.

Definition 2 (the space of the bounded sequences of complex numbers).

$$\ell^{\infty} := \ell^{\infty}(\mathbb{N}_0) := \left\{ x \in \mathbb{C}^{\mathbb{N}_0} : \underbrace{}_{2} \right\}.$$

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 1 of 14

Canonical basis of ℓ^2 (review)

Definition 3 (canonical basis of ℓ^2). For every $n \in \mathbb{N}_0$, denote by e_n the sequence

$$e_n := \left(\delta_{n,j}\right)_{j \in \mathbb{N}_0}.$$

In the following exercises we shall see that $(e_n)_{n\in\mathbb{N}_0}$ is an orthonormal basis of ℓ^2 .

Exercise 1. Write the sequence e_2 : $e_2 = (\underbrace{}_?, \underbrace{}_?, \underbrace{}_?, \underbrace{}_?, \underbrace{}_?, \underbrace{}_?, \underbrace{}_?, \underbrace{}_?, \ldots)$.

Exercise 2. Write the following sequences:

Exercise 3. Write the following sequences in terms of the basic elements e_n :

$$(0,0,0,5,0,\ldots) = \underbrace{\qquad \qquad }_{?}, \qquad (2,0,-4,0,0,\ldots) = \underbrace{\qquad \qquad }_{?}.$$

Exercise 4 (orthonormality of the canonical basis). Let $m, n \in \mathbb{N}_0$. Calculate the product:

$$\langle e_m, e_n \rangle =$$

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 2 of 14

Exercise 5 (norm of an element of the canonical basis). Let $n \in \mathbb{N}_0$. Calculate the norm of e_n :

$$||e_n||_2 = \underbrace{\qquad}_?.$$

Exercise 6 (norm of a multiple of an element of the canonical basis). Let $n \in \mathbb{N}_0$ and $\lambda \in \mathbb{C}$. Calculate the norm of λe_n :

$$\|\lambda e_n\|_2 = \underbrace{\hspace{1cm}}_{?}$$

Exercise 7. Let $x \in \ell^2$ and $n \in \mathbb{N}_0$. Calculate:

$$\langle e_n, x \rangle =$$

Exercise 8. Suppose that $x \in \ell^2$ and $\langle e_n, x \rangle = 0$ for all $n \in \mathbb{N}_0$. Then

According to general criteria of orthonormal basis in a Hilbert space, it implies that the sequence $(e_n)_{n\in\mathbb{N}_0}$ is an orthonormal basis of ℓ^2 .

Exercise 9. Let $x \in \ell^2$. Write the decomposition of x in the basis $(e_n)_{n \in \mathbb{N}_0}$:

$$x = \sum_{n \in \mathbb{N}_0} \underbrace{\qquad}_{?} e_n.$$

Exercise 10. Let $x \in \ell^2$ and $m \in \mathbb{N}_0$ such that

$$\forall n \in \mathbb{N}_0 \setminus \{m\} \qquad \langle e_n, x \rangle = 0.$$

What can you say about x? Write x in terms of some basic elements e_n and some inner products.

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 3 of 14

Definition of the multiplication operator (review)

Exercise 11 (component-wise product of sequences, review). Let $x, y \in \mathbb{C}^{\mathbb{N}_0}$. Write the definition of the *component-wise product* of the sequences x and y:

$$\forall n \in \mathbb{N}_0 \qquad (xy)_n := \underbrace{\qquad \qquad }_?.$$

In other words,

$$xy \coloneqq \left(\underbrace{}_{?}\right)_{n \in \mathbb{N}_0}.$$

Exercise 12 (definition of the multiplication operator, review). Let $a \in \ell^{\infty}$. Define $M_a : \ell^2 \to \ell^2$ by

$$M_a x := \underbrace{\qquad}_{?}$$

that is,

$$\forall x \in \ell^2 \qquad \forall j \in \mathbb{N}_0 \qquad (M_a x)_j := \underbrace{\qquad}_{2}.$$

Exercise 13 (action of the multiplication operator on the canonical basis, review). Let $a \in \ell^{\infty}$ and $n \in \mathbb{N}_0$. Calculate $M_a e_n$.

Exercise 14. Let $a \in \ell^{\infty}$ and $n \in \mathbb{N}_0$. Calcule the ℓ^2 -norm of the sequence $M_a e_n$:

$$||M_a e_n||_2 = \underbrace{\qquad}_{?}.$$

Supremum and infimum (review)

Definition 4. Denote by $\overline{\mathbb{R}}$ the extended real line $\mathbb{R} \cup \{-\infty, +\infty\}$ with the canonical order. The additional elements $-\infty$ and $+\infty$ satisfy

$$\forall \alpha \in \mathbb{R} \quad -\infty < a, \qquad \forall \alpha \in \mathbb{R} \quad \alpha < +\infty, \qquad -\infty < +\infty.$$

Exercise 15 (upper bound of a set of real numbers). Let $A \subset \overline{\mathbb{R}}$ and $\beta \in \overline{\mathbb{R}}$. Recall the definition:

$$\beta$$
 is an upper bound of $A \iff \frac{}{}$

Exercise 16. Let $A \subset \overline{\mathbb{R}}$ and $\gamma \in \overline{\mathbb{R}}$. Then,

$$\gamma$$
 is not an upper bound of $A \iff$

Exercise 17. Let $A \subset \overline{\mathbb{R}}$ and $\beta \in \overline{\mathbb{R}}$. What does mean the phrase " β is the supremum of A"? Write the definition using the concept of the upper bounds. (It is known that for every $A \subset \overline{\mathbb{R}}$ there exists a unique supremum in $\overline{\mathbb{R}}$. We shall not prove this fact here.)

$$\beta = \sup(A) \iff$$

Exercise 18. Let $A \subset \overline{\mathbb{R}}$ and $\beta \in \overline{\mathbb{R}}$. What does mean the phrase " β is the supremum of A"? Write the answer in terms of the quantifications \forall and \exists and some of the inequalities $<,>,\leq,\geq$, without mentioning explicitly the concept of upper bounds.

$$\beta = \sup(A)$$
 \iff
$$\begin{cases} 1) & \forall \alpha \in A & \dots \\ 2) & \forall \gamma < \beta & \dots \end{cases}$$

Exercise 19. Let $x = (x_n)_{n \in \mathbb{N}_0}$ be a sequence in \mathbb{R} and $\beta \in \overline{\mathbb{R}}$. What does mean the phrase " β is the supremum of the sequence x"? Write the answer in terms of the quantifications \forall and \exists and some of the inequalities $<,>,\leq,\geq$.

$$\beta = \sup_{n \in \mathbb{N}_0} x_n \qquad \Longleftrightarrow \qquad \begin{cases} 1) & \forall n \in \mathbb{N}_0 & \dots \\ 2) \end{cases}$$

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 5 of 14

Multiplication operator: boundness and norm (review)

Exercise 20 (definition of the supremum norm, review). Let $a \in \ell^{\infty}$. Put

$$\nu \coloneqq ||a||_{\infty} = \sup_{n \in \mathbb{N}_0} |a_n|.$$

Write the definition of ν using the quantifications \forall and \exists and some of the inequalities $<,>,\leq,\geq$, without mentioning explicitly the concept of upper bounds.

Exercise 21 (idea of the upper bound for the norm of the multiplication operator, review). Let $a \in \ell^{\infty}$ and $x \in \ell^{2}$. Write an upper bound for the norm of $M_{a}x$.

$$||M_a x||_2 \le \underbrace{\qquad}_{?}.$$

Exercise 22 (idea of the lower bound for the norm of the multiplication operator, review). Let $a \in \ell^{\infty}$. Compare $||M_a||$ to $||M_a e_n||_2$.

Exercise 23 (norm of the multiplication operator, review). Let $a \in \ell^{\infty}$. Then

$$||M_a|| = \underbrace{\qquad}_?.$$

Algebraic operations with multiplication operators, review

In the following exercises recall that the set of the multiplication operators is closed under algebraic operations: for example, the sum of two multiplication operators results to be also a multiplication operator.

Exercise 24 (sum of two multiplication operators, review). Let $a, b \in \ell^{\infty}$. Then

$$M_a + M_b = \underbrace{\hspace{1cm}}_{?}.$$

Exercise 25 (product of a multiplication operator by a scalar, review). Let $a \in \ell^{\infty}$ and $\lambda \in \mathbb{C}$. Then

$$\lambda M_a = \underbrace{\qquad \qquad }_{?}.$$

Exercise 26 (product of two multiplication operators). Let $a, b \in \ell^{\infty}$. Then

$$M_a M_b = \underbrace{\hspace{1cm}}_{?}$$

Exercise 27 (adjoint to the multiplication operator). Let $a \in \ell^{\infty}$. Then

Exercise 28 (identity operator as a multiplication operator). Denote by I the identity operator on the space ℓ^2 . Find a function a such that $M_a = I$.

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 7 of 14

Range and closed range of a sequence

Exercise 29 (definition of the closure of a set in a metric space, review). Let (X, d) be a metric space, $A \subset X$ and $\beta \in X$. What does mean the phrase " β is a point of closure of A" (in other words, " β is an adherent point of A")? Write the definition using quantifications and inequalities:

$$b \in \operatorname{clos}(A) \iff$$

Definition 5 (range and closed range of a sequence of complex numbers). Let $a: \mathbb{N}_0 \to \mathbb{C}$. Denote by $\mathcal{R}(a)$ the range (the set of the values) of a:

$$\mathcal{R}(a) := \{ z \in \mathbb{C} : \exists n \in \mathbb{N}_0 \ z = a_n \}$$

and by $\mathcal{CR}(a)$ the closure of the range of a:

$$CR(a) := clos(R(a)).$$

Exercise 30. Let $a: \mathbb{N}_0 \to \mathbb{C}$. Write the definition of $\mathcal{CR}(a)$ using quantifications and inequalities:

$$w \in \mathcal{CR}(a) \iff$$

Exercise 31 (example). Consider a sequence $a: \mathbb{N}_0 \to \mathbb{C}$ is defined by

$$a_n = (1 + (-1)^n) \frac{n}{n+1}.$$

Calculate some first components of a.

$$a = \left(\qquad , \qquad , \qquad , \qquad , \qquad , \qquad \ldots \right).$$

Find $\mathcal{R}(a)$ and $\mathcal{CR}(a)$.

Injectivity and kernel of a linear operator (review)

Exercise 32 (definition of injective function). Let X, Y be some sets and $f: X \to Y$ be a function. What does mean the phrase "f is injective"?

Exercise 33 (definition of the kernel of a linear operator). Let $T: \ell^2 \to \ell^2$ be a linear operator. Then the *kernel* (called also the *null-space*) of T is defined by:

$$\ker(T) := \{x \in \ell^2 : \underbrace{\qquad}_?$$

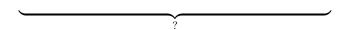
Exercise 34 (criterium of the injectivity of linear operator). Let $T: \ell^2 \to \ell^2$ be a linear operator. Prove that

$$T$$
 is injective \iff $\ker(T) = \{0\}.$

Exercise 35 (the kernel of a bounded linear operator is closed). Let $T: \ell^2 \to \ell^2$ be a bounded linear operator. Prove that its kernel $\ker(T)$ is a closed set (in the sense of the norm in ℓ^2).

Invertibility of a bounded linear operator (review)

Exercise 36. Let $T: \ell^2 \to \ell^2$ be a bounded linear operator. It is said that T is *invertible* if there exists a bounded linear operator $S: \ell^2 \to \ell^2$ such that



It is known that if there exists such operator S, then it is unique. In the case of existence, S is called the *inverse operator* to T and is denoted by T^{-1} .

Exercise 37. Let $T: \ell^2 \to \ell^2$ be an invertible bounded linear operator. Prove that T is injective.

Exercise 38. Let $T: \ell^2 \to \ell^2$ be an invertible bounded linear operator. Prove that for all $x \in \ell^2$,

$$||Tx||_2 \ge ||T^{-1}||^{-1}||x||_2.$$

Exercise 39. Let $T: \ell^2 \to \ell^2$ be a bounded linear operator. Suppose that for all $\varepsilon > 0$ there exists a sequence $x \in \ell^2$ such that $||x||_2 = 1$ and $||Tx||_2 < \varepsilon$. Prove that T is not invertible.

Invertibility of diagonal matrices (review)

The following exercises help to review some ideas useful to study the invertibility of the multiplication operator.

Exercise 40 (diagonal matrix as a multiplication operator, review). Let $a \in \mathbb{C}^3$. Denote the components of a by a_0, a_1, a_2 . Denote by diag(a) the diagonal matrix with diagonal entries a_0, a_1, a_2 :

$$\operatorname{diag}(a) := \left[\begin{array}{ccc} a_0 & 0 & 0 \\ 0 & a_1 & 0 \\ 0 & 0 & a_2 \end{array} \right].$$

Calculate the product of diag(a) by a general vector $x \in \mathbb{C}^3$:

$$\operatorname{diag}(a)x = \begin{bmatrix} a_0 & 0 & 0 \\ 0 & a_1 & 0 \\ 0 & 0 & a_2 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} =$$

Exercise 41 (invertibility of a diagonal matrix, review). Let $a \in \mathbb{C}^3$. Recall the criterim of the invertibility of the diagonal matrix $\operatorname{diag}(a)$:

$$\operatorname{diag}(a)$$
 is invertible \iff

Exercise 42 (inverse to the diagonal matrix, review). Let $a \in \mathbb{C}^3$ such that $\operatorname{diag}(a)$ is invertible. Write the formula for the inverse matrix:

$$\operatorname{diag}(a)^{-1} = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}.$$

Using the notation $1/a = (1/a_0, 1/a_1, 1/a_2)$ write the result in a short form:

$$\operatorname{diag}(a)^{-1} = \underbrace{\hspace{1cm}}_{?}.$$

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 11 of 14

Invertibility of the multiplication operator

Exercise 43. Let $a \in \ell^{\infty}$. Prove that the following conditions are equivalent:

$$0 \notin \mathcal{CR}(a) \qquad \Longleftrightarrow \qquad \inf_{j \in \mathbb{N}_0} |a_j| > 0.$$

Exercise 44. Let $a \in \ell^{\infty}$ such that $0 \notin \mathcal{CR}(a)$. Prove that M_a is invertible. (Construct the inverse operator.)

Exercise 45. Let $a \in \ell^{\infty}$ such that $0 \in \mathcal{R}(a)$. Prove that M_a is not injective and therefore not invertible.

Exercise 46. Let $a \in \ell^{\infty}$ such that $0 \in \mathcal{CR}(a)$. Prove that for all $\varepsilon > 0$ there exists a sequence $x \in \ell^2$ such that $||x||_2 = 1$ and

$$||M_a x||_2 < \varepsilon.$$

Exercise 47. Let $a \in \ell^{\infty}$ such that $0 \in \mathcal{CR}(a)$. Prove that M_a is not invertible.

Exercise 48. Let $a \in \ell^{\infty}$. Write a criterion:

$$M_a$$
 is invertible \iff

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 12 of 14

Spectrum of the multiplication operator

Exercise 49. Let A be a bounded linear operator in a complex Banach space X. Recall the definition of the spectrum of A.

$$\operatorname{Sp}(A) := \left\{ \lambda \in \mathbb{C} : \right\}$$

Exercise 50. Let $a \in \ell^{\infty}$. Find the spectrum of M_a .

Exercise 51. Let A be a bounded linear operator in a complex Banach space X and $\lambda \in \mathbb{C}$. What does mean the condition " λ is an eigenvalue of A?

Exercise 52. Let A be a bounded linear operator in a complex Banach space X and $\lambda \in \mathbb{C}$. Recall the definition of the point spectrum of A:

$$\operatorname{Sp}_p(A) := \left\{ \lambda \in \mathbb{C} : \right\}$$

Exercise 53. Let $a \in \ell^{\infty}$. Find the point spectrum of the multiplication operator M_a .

Exercise 54 (spectrum of the multiplication operator in terms of its point spectrum). Let $a \in \ell^{\infty}$. Express $\operatorname{Sp}(M_a)$ in terms of $\operatorname{Sp}_p(M_a)$.

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 13 of 14

Multiplication operator and canonical basis

Exercise 55. Let $a \in \ell^{\infty}$, $x \in \ell^2$ and $n \in \mathbb{N}_0$. Calculate:

$$\langle e_n, M_a x \rangle =$$

Exercise 56. Let $a \in \ell^{\infty}$ and $x \in \ell^2$. Prove that

$$M_a x = \sum_{j \in \mathbb{N}_0} a_j \langle e_j, x \rangle \, e_j.$$

Exercise 57. Let $a \in \ell^{\infty}$ and $j \in \mathbb{N}_0$. Calculate:

$$\langle e_i, M_a e_i \rangle =$$

Exercise 58. Let $a \in \ell^{\infty}$ and the sequence $(\lambda_j)_{j \in \mathbb{N}_0}$ is defined by:

$$\forall j \in \mathbb{N}_0 \qquad \lambda_j := \langle e_j, M_a e_j \rangle.$$

Express a through λ_j .

Exercise 59. Let $a \in \ell^{\infty}$ and $j, k \in \mathbb{N}_0$ such that $j \neq k$. Calculate:

$$\langle e_j, M_a e_k \rangle =$$

Invertibility and spectrum of the multiplication operator on ℓ^2 , page 14 of 14