Multiplication operator on the space of square-summable sequences

Objectives. Study some basic properties of the multiplication operator on the space ℓ^2 .

Requirements. Diagonal matrices, product of diagonal matrices, the space ℓ^2 of the square-summable sequences of complex numbers, the space ℓ^{∞} of the bounded sequences of complex numbers, Kronecker's delta, sums with Kronecker's delta, the supremum and the infimum of a set of real numbers, the supremum and the infimum of a sequence of real numbers, the closure of a set in a metric space, bounded linear operators, the norm of a bounded linear operator, the adjoint (the Hermitian conjugate) of a bounded linear operator, the invertibility of a bounded linear operator, the spectrum of a bounded linear operator.

Denote by \mathbb{N}_0 the set of the natural numbers: $\mathbb{N}_0 \coloneqq \{0, 1, 2, \ldots\}$. The notation $\mathbb{C}^{\mathbb{N}_0}$ will be used for the set of all the sequences of complex numbers, that is, for the set of all the functions $\mathbb{N}_0 \to \mathbb{C}$.

Definition 1 (the space of the square-summable sequences of complex numbers).

$$\ell^2 \coloneqq \ell^2(\mathbb{N}_0) \coloneqq \left\{ x \in \mathbb{C}^{\mathbb{N}_0} \colon \underbrace{\sum_{j \quad x_j \quad \gamma}}_{?} \right\}$$

The space ℓ^2 is a Hilbert space with respect to the inner product

$$\langle x, y \rangle \coloneqq \sum_{j \in \mathbb{N}_0} \overline{x_j} y_j.$$

This inner product is linear with respect to the second argument. Many authors define inner product to be linear with respect to the first argument.

Definition 2 (the space of the bounded sequences of complex numbers).

Multiplication operator on the space of square-summable sequences, page 1 of 10

Canonical base of ℓ^2 (review)

Definition 3 (canonical base of ℓ^2). For every $n \in \mathbb{N}_0$, denote by e_n the sequence

$$e_n \coloneqq \left(\delta_{n,j}\right)_{j \in \mathbb{N}_0}.$$

In the following exercises we shall see that $(e_n)_{n \in \mathbb{N}_0}$ is an orthonormal base of ℓ^2 .

Exercise 1. Write the sequence e_2 :

$$e_{2} = \left(\delta_{2,0}, \, \delta_{2,1}, \, \delta_{2,2}, \, \delta_{2,3}, \, \delta_{2,4}, \, \dots \right) = \left(\underbrace{}_{?}, \underbrace{}_{}$$

Exercise 2. Write the following sequences:

$$-3e_0 = (, , , , , , , , ...),$$

$$7e_1 = (, , , , , , , ...),$$

$$4e_0 - 5e_3 = (, , , , , , , ...).$$

Exercise 3. Write the following sequences in terms of the basic elements e_n :

$$(0, 0, 0, 5, 0, \ldots) = \underbrace{(2, 0, -4, 0, 0, \ldots)}_{?} = \underbrace{(2, 0, -4, 0, 0, \ldots)}_{?} = \underbrace{(2, 0, -4, 0, 0, \ldots)}_{?}$$

Exercise 4 (orthonormality of the canonical base). Let $m, n \in \mathbb{N}_0$. Calculate the product:

$$\langle e_m, e_n \rangle =$$

Multiplication operator on the space of square-summable sequences, page 2 of 10

Exercise 5 (norm of an element of the canonical base). Let $n \in \mathbb{N}_0$. Calculate the norm of e_n :

$$\|e_n\|_2 = \underbrace{\qquad}_?$$

Exercise 6 (norm of a multiple of an element of the canonical base). Let $n \in \mathbb{N}_0$ and $\lambda \in \mathbb{C}$. Calculate the norm of λe_n :

$$\|\lambda e_n\|_2 = \underbrace{\qquad}_{?}$$

Exercise 7. Let $x \in \ell^2$ and $n \in \mathbb{N}_0$. Calculate:

$$\langle e_n, x \rangle =$$

Exercise 8. Suppose that $x \in \ell^2$ and $\langle e_n, x \rangle = 0$ for all $n \in \mathbb{N}_0$. Then

According to general criteria of orthonormal basis in a Hilbert space, it implies that the sequence $(e_n)_{n \in \mathbb{N}_0}$ is an orthonormal base of ℓ^2 .

Exercise 9. Let $x \in \ell^2$. Write the decomposition of x in the base $(e_n)_{n \in \mathbb{N}_0}$:

$$x = \sum_{n=0}^{\infty} \underbrace{\qquad}_{?} e_n.$$

Exercise 10. Let $x \in \ell^2$ and $m \in \mathbb{N}_0$ such that

$$\forall n \in \mathbb{N}_0 \setminus \{m\} \qquad \langle e_n, x \rangle = 0.$$

What can you say about x? Write x in terms of some basic elements and some inner products.

Multiplication operator on the space of square-summable sequences, page 3 of 10

Multiplication operator: definition and examples

Definition 4 (component-wise product of sequences). Let $x, y \in \mathbb{C}^{\mathbb{N}_0}$. Denote by xy the *component-wise product* of the sequences x and y:

$$\forall n \in \mathbb{N}_0 \qquad (xy)_n \coloneqq x_n y_n.$$

In other words,

$$xy \coloneqq \left(x_n y_n\right)_{n \in \mathbb{N}_0}.$$

Definition 5 (multiplication operator). Let $a \in \ell^{\infty}$. Define $M_a \colon \ell^2 \to \ell^2$ by

$$M_a x \coloneqq ax,$$

that is,

$$\forall x \in \ell^2 \qquad \forall j \in \mathbb{N}_0 \qquad (M_a x)_j \coloneqq a_j x_j.$$

Exercise 11. Let $a: \mathbb{N}_0 \to \mathbb{C}$ be defined by

$$a \coloneqq \left(1 + (-1)^n\right)_{n \in \mathbb{N}_0} = \left(\underbrace{}_{?}, \underbrace{}_{?}, \underbrace{}, \underbrace{}_{?}, \underbrace{},$$

Consider

$$x \coloneqq \left(\frac{1}{n+1}\right)_{n \in \mathbb{N}_0} = \left(\dots, \dots, \dots, \dots, \dots \right).$$

Calculate $M_a x$:

$$M_a x = \left(\qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad . \right).$$

Exercise 12 (identity operator as a multiplication operator). Denote by I the identity operator on the space ℓ^2 :

$$\forall x \in \ell^2 \qquad I(x) \coloneqq x.$$

Find a sequence $a \in \ell^{\infty}$ such that $M_a = I$.

$$a = \left(\qquad , \qquad \right)$$

Multiplication operator on the space of square-summable sequences, page 4 of 10

Multiplication operator acting on the canonical base of ℓ^2

Exercise 13. Let $a \in \ell^{\infty}$ be a general bounded sequence:

$$a \coloneqq (a_0, a_1, a_2, a_3, a_4, \ldots).$$

Write first components of the basic element e_3 :

$$e_3 = (, , , , , , , \dots).$$

Calculate $M_a e_3$:

$$M_a e_3 = \left(\quad , \quad , \quad , \quad , \quad , \quad , \quad . \right).$$

Write the answer in terms of some basic elements: $M_a e_3 = \underbrace{\qquad}_?$.

Exercise 14. Let $a \in \ell^{\infty}$ and $n \in \mathbb{N}_0$. Write a general formula for $M_a e_n$ and prove it.

Exercise 15. Let $a \in \ell^{\infty}$ and $n \in \mathbb{N}_0$. Calcule the ℓ^2 -norm of the sequence $M_a e_n$:

$$\|M_a e_n\|_2 = \underbrace{\qquad}_?$$

Multiplication operator on the space of square-summable sequences, page 5 of 10

Supremum and infimum (review)

Definition 6. Denote by $\overline{\mathbb{R}}$ the *extended real number line* $\mathbb{R} \cup \{-\infty, +\infty\}$ with the canonical order. The additional elements $-\infty$ and $+\infty$ satisfy

 $\forall \alpha \in \mathbb{R} \qquad -\infty < a; \qquad \qquad \forall \alpha \in \mathbb{R} \qquad \alpha < +\infty; \qquad -\infty < +\infty.$

Exercise 16 (upper bound of a set of real numbers). Let $A \subset \overline{\mathbb{R}}$ and $\beta \in \overline{\mathbb{R}}$. Recall the definition:

 β is an upper bound of $A \iff 2$?

Exercise 17. Let $A \subset \overline{\mathbb{R}}$ and $\gamma \in \overline{\mathbb{R}}$. Then,

 γ is not an upper bound of $A \iff \underbrace{\qquad}_{\gamma}$

Exercise 18. Let $A \subset \overline{\mathbb{R}}$ and $\beta \in \overline{\mathbb{R}}$. What does mean the phrase " β is the supremum of A"? Write the definition using the concept of the upper bounds. (It is known that for every $A \subset \overline{\mathbb{R}}$ there exists a unique supremum in $\overline{\mathbb{R}}$. We shall not prove this fact here.)

$$\beta = \sup(A) \qquad \Longleftrightarrow \qquad$$

Exercise 19. Let $A \subset \overline{\mathbb{R}}$ and $\beta \in \overline{\mathbb{R}}$. What does mean the phrase " β is the supremum of A"? Write the answer in terms of the quantifications \forall and \exists and some of the inequalities $\langle , \rangle, \leq, \geq$, without mentioning explicitly the concept of upper bounds.

$$\beta = \sup(A) \qquad \Longleftrightarrow \qquad \begin{cases} 1) & \forall \alpha \in A & \dots \\ 2) & \forall \gamma < \beta & \dots \end{cases}$$

Exercise 20. Let $x = (x_n)_{n \in \mathbb{N}_0}$ be a sequence in \mathbb{R} and $\beta \in \overline{\mathbb{R}}$. What does mean the phrase " β is the supremum of the sequence x"? Write the answer in terms of the quantifications \forall and \exists and some of the inequalities $\langle , \rangle, \leq \rangle$.

$$\beta = \sup_{n \in \mathbb{N}_0} x_n \qquad \Longleftrightarrow \qquad \begin{cases} 1) \quad \forall n \in \mathbb{N}_0 \quad \dots \\ 2) \end{cases}$$

Multiplication operator on the space of square-summable sequences, page 6 of 10

Multiplication operator: boundness and norm

Exercise 21 (definition of the supremum norm, review). Let $a \in \ell^{\infty}$. Put

$$\nu \coloneqq ||a||_{\infty} = \sup_{n \in \mathbb{N}_0} |a_n|.$$

Write the definition of ν using the quantifications \forall and \exists and some of the inequalities $\langle , \rangle, \leq, \geq$, without mentioning explicitly the concept of upper bounds.

Exercise 22 (boundness of the multiplication operator). Let $a \in \ell^{\infty}$ and $x \in \ell^2$. Denote $||a||_{\infty}$ by ν . Prove that $||M_a x||_2 \leq \nu ||x||_2$.

$$||M_a x||_2^2 = ||\underbrace{|}_{?} ||_2^2 = \sum_{j=0}^{\infty} \underbrace{|}_{?} \leq$$

Exercise 23. Let $a \in \ell^{\infty}$. Put $\nu \coloneqq ||a||_{\infty}$. Given a number $\gamma < \nu$, construct a sequence $x \in \ell^2$ such that

$$||x||_2 = 1$$
 and $||M_a x||_2 \ge \gamma$.

Exercise 24 (norm of a bounder linear operator, review). Let $T: \ell^2 \to \ell^2$ be a bounded linear operator. Recall the definition of the norm of T:

$$||T|| \coloneqq$$

Exercise 25 (norm of the multiplication operator). Let $a \in \ell^{\infty}$. Calculate $||M_a||$.

Multiplication operator on the space of square-summable sequences, page 7 of 10

In the previous exercises we deduced a formula for the norm of $||M_a||$ using the definition of supremum. There is another way to prove one part of this result.

Exercise 26 (monotonicity of the image of a subset under a function). Let $f: X \to Y$ be an arbitrary function and $A \subset B \subset X$. Compare the images of A and B under the function f (choose \subset or \supset):

$$f(A) \underbrace{}_{?} f(B).$$

Exercise 27. Let $a \in \ell^{\infty}$. Compare the following sets (put \subset or \supset):

$$\{e_n: n \in \mathbb{N}_0\} \underbrace{}_{?} \{x \in \ell^2: \|x\|_2 = 1\}$$

$$\{M_a e_n: n \in \mathbb{N}_0\} \underbrace{}_{?} \{M_a x: x \in \ell^2, \|x\|_2 = 1\},$$

$$\{\|M_a e_n\|_2: n \in \mathbb{N}_0\} \underbrace{}_{?} \{\|M_a x\|_2: x \in \ell^2, \|x\|_2 = 1\}.$$

Exercise 28 (monotonicity of the supremum of a set). Let $A, B \in \overline{\mathbb{R}}$ such that $A \subset B$. Compare the supremums of A and B:

$$\sup(A) \underbrace{}_{?} \sup(B).$$

Exercise 29. Applying the results of two previous exercises deduce an inequality between $||M_a||$ and $||a||_{\infty}$.

Multiplication operator on the space of square-summable sequences, page 8 of 10

Linear operations with multiplication operators

Exercise 30 (linear operations with bounded linear operators, review). Recall the definition of the linear operations with bounded linear operators. If $T: \ell^2 \to \ell^2$ and $S: \ell^2 \to \ell^2$ are bounded linear operators and $\lambda \in \mathbb{C}$, then for all $x \in \ell^2$

$$(T+S)(x) \coloneqq \underbrace{\qquad}_?, \qquad (\lambda T)(x) \coloneqq \underbrace{\qquad}_?.$$

Exercise 31. Let $a, b \in \ell^{\infty}$. Calculate $M_a + M_b$.

Solution. Let x be an arbitrary element of ℓ^2 . Then

$$(M_a + M_b)(x) =$$

On the other hand,

$$M_{a+b}(x) =$$

So we see that for every $x \in \ell^2$ the following vectors are equal:

$$\underbrace{}_{?} = \underbrace{}_{?} \cdot$$

Since x is arbitrary, we conclude that the following operators are equal:

$$M_a + M_b = \underbrace{\qquad \qquad }_{?} . \qquad \Box$$

.

Exercise 32. Let $a \in \ell^{\infty}$ and $\lambda \in \mathbb{C}$. Calculate λM_a .

Multiplication operator on the space of square-summable sequences, page 9 of 10

Product of multiplication operators

Exercise 33 (product of bounded linear operators, review). Recall the definition of the product of bounded linear operators. If $T: \ell^2 \to \ell^2$ and $S: \ell^2 \to \ell^2$ are bounded linear operators, then for all $x \in \ell^2$

$$(TS)(x) \coloneqq \underbrace{\qquad}_?$$
.

Exercise 34. Let $a, b \in \ell^{\infty}$. Calculate $M_a M_b$.

Adjoint operator of the multiplication operator

Exercise 35 (adjoint to a bounded linear operator, review). Recall the definition of the adjoint to a bounded linear operator. Let $T: \ell^2 \to \ell^2$ is a bounded linear operator. A bounded linear operator $S: \ell^2 \to \ell^2$ is called *adjoint* (or *Hermitian conjugate*) of T if for all $x, y \in \ell^2$

It is known that there exists a unique operator S satisfying this condition. This operator is denoted by T^* .

Exercise 36. Let $a \in \ell^{\infty}$. Calculate M_a^* , that is, the adjoint of the operator M_a . Solution. For all $x, y \in \ell^2$,

$$\langle x, M_a y \rangle =$$

Therefore for all $x \in \ell^2$,

$$M_a^*(x) = \underbrace{\qquad}_?$$

Conclusion: $M_a^* = \underbrace{\qquad}_?$.

Multiplication operator on the space of square-summable sequences, page 10 of 10