Logarithmic distance on the positive half-line

Denote the interval $(0, +\infty)$ by \mathbb{R}_+ .

Definition 1. Define the function $\rho \colon \mathbb{R}_+ \times \mathbb{R}_+ \to [0, +\infty)$ by

$$\rho(x, y) \coloneqq \left| \ln(x) - \ln(y) \right|.$$

Exercise 1. Recall that for all a, b > 0

 $\ln(a) - \ln(b) = \ln - - - -.$

Therefore ρ can be written in the following form:

$$\rho(x,y) =$$

Note 1. In the following exercise we use the functions max and min and threat them as functions of two real arguments:

$$\max(7,3) = 7, \qquad \min(7,3) = 3.$$

Exercise 2. Fill the table:

	compare $\ln(x)$ and $\ln(y)$	$\frac{\text{simplify}}{\left \ln(x) - \ln(y)\right }$	$ \begin{array}{c} \text{simplify} \\ \max(x, y) \end{array} $	$ simplify \\ min(x, y) $
Case $x \ge y$:	$\ln(x)_{?}\ln(y)$			
Case $x < y$:	$\ln(x)_{?}\ln(y)$			

Exercise 3. Express $\rho(x, y)$ through $\max(x, y)$ and $\min(x, y)$:

$$\rho(x,y) = \ln() - \ln() = \ln - .$$

Logarithmic distance on the positive half-line, page 1 of 10

Direct verification that ρ is a distance

We are going to prove that ρ is a distance on \mathbb{R}_+ .

Exercise 4. List the conditions from the definition of distance (= metric).

1.

2.

- 3. For all x, $\rho(x, x) = \underbrace{}_{?}$.
- 4. For all x, y, if $x \neq y$, then

Exercise 5. Prove that ρ is symmetric.

Exercise 6. Let $x, y \in \mathbb{R}_+$, $x \neq y$. Prove that $\rho(x, y) > 0$.

Exercise 7. Prove that ρ fulfills the triangular inequality.

Abstract construction: transfer of distance

Exercise 8. Let (M, g) be a metric space, X be a set and $\phi: X \to M$ be an injective function. Define the function $f: X \times X \to [0, +\infty]$ by

$$f(x,y) \coloneqq g(\phi(x),\phi(y)).$$

Prove that f is a distance on X.

Definition 2. Denote by d the standard distance on \mathbb{R} :

$$\forall t, u \in \mathbb{R}$$
 $d(t, u) \coloneqq |t - u|.$

Exercise 9. Explain how to apply the construction from the Exercise 8 to define the logarithmic distance ρ on \mathbb{R}_+ :

$$\rho(x,y) = \left| \ln(x) - \ln(y) \right|.$$

$$X = M =$$

 $f = g =$
 $\phi(x) =$

Logarithmic distance on the positive half-line, page 3 of 10

\mathbb{R}_+ as a group

Exercise 10. The set \mathbb{R}_+ is usually considered with the binary operation

and is a $\underbrace{\text{group.}}_{\text{commutative/non-commutative}}$

Exercise 11. The function $\underbrace{\qquad}_{?}$ is an isomorphism from the group $(\mathbb{R}, +)$ to the group $(\mathbb{R}_+, \underbrace{\qquad}_?)$, and the inverse isomorphism from $(\mathbb{R}_+, \underbrace{\qquad}_?)$ to $(\mathbb{R}, +)$ is given by the function $\underbrace{\qquad}_?$.

The distance ρ is invariant under dilations (in other words, is homogeneous of degree 0)

Exercise 12. Let x, y, t > 0. Simplify:

$$\rho(tx, ty) =$$

Note 2. In other words, the Exercise 12 states that the distance ρ conforms with the operation of the group \mathbb{R}_+ .

Exercise 13. Let x, y > 0. Express $\rho(x, y)$ through $\rho(x/y, 1)$.

δ -neighborhoods of 1 with respect to the distance ρ

Exercise 14 (right δ -neighborhood of 1 with respect to the distance ρ). Let $\delta > 0$. Find all $u \in [1, +\infty)$ such that $\rho(u, 1) < \delta$.

Exercise 15 (left δ -neighborhood of 1 with respect to the distance ρ). Let $\delta > 0$. Find all $u \in (0, 1]$ such that $\rho(u, 1) < \delta$.

Exercise 16 (δ -neighborhood of 1 with respect to the distance ρ). Let $\delta > 0$. Find all $u \in \mathbb{R}_+$ such that $\rho(u, 1) < \delta$.

Logarithmic distance on the positive half-line, page 5 of 10

δ -entourages with respect to the distance ρ

Exercise 17. Let $\delta > 0$ and $x \in \mathbb{R}_+$. Find all $y \in [x, +\infty)$ such that $\rho(x, y) < \delta$.

$$\begin{cases} y \ge x \\ \rho(x,y) < \delta \end{cases} \iff \begin{cases} \frac{y}{x} \\ \rho\left(1, \frac{y}{x}\right) \end{cases} \iff$$

$$\iff \underbrace{\qquad}_{?} \leq y < \underbrace{\qquad}_{?} \iff y \in \left[\qquad , \qquad \right)$$

Exercise 18. Let $\delta > 0$ and $x \in \mathbb{R}_+$. Find all $y \in (0, x]$ such that $\rho(x, y) < \delta$.

Exercise 19. Let $\delta > 0$ and $x \in \mathbb{R}_+$. Find all $y \in \mathbb{R}_+$ such that $\rho(x, y) < \delta$.

Logarithmic distance on the positive half-line, page 6 of 10

Some upper and lower bounds for the logarithmic function

Exercise 20. Define $f: [1, +\infty) \to \mathbb{R}$ by

$$f(u) \coloneqq u - 1 - \ln(u).$$

Calculate f'(u) and determine the sign of f'(u) for u > 1. Determine if f increases or decreases on $[1, +\infty)$. Calculate f(1) and determine the sign of f(u) for u > 1.

Exercise 21. Let $u \ge 1$. Compare $\ln(u)$ with u - 1.

$$\forall u \ge 1$$
 $\ln(u) \underbrace{}_{?} u - 1.$

Exercise 22. Define $f: [1, +\infty) \to \mathbb{R}$ by

$$f(u) \coloneqq \frac{1}{u} - 1 + \ln(u).$$

Calculate f'(u) and determine the sign of f'(u) for u > 1. Determine if f increases or decreases on $[1, +\infty)$. Calculate f(1) and determine the sign of f(u) for u > 1.

Exercise 23. Let $u \ge 1$. Compare $\ln(u)$ with $1 - \frac{1}{u}$.

$$\forall u \ge 1$$
 $\ln(u) \underbrace{1}_{?} 1 - \frac{1}{u}.$

Logarithmic distance on the positive half-line, page 7 of 10

Exercise 24. Define $f: (1, +\infty) \to \mathbb{R}$ by

$$f(u) \coloneqq \frac{\ln(u)}{1 - \frac{1}{u}}.$$

Calculate f'(u) and determine the sign of f'(u) for u > 1. Determine if f increases or decreases on $[1, +\infty)$.

Exercise 25. Find a positive constant C > 0 such that $\forall t \in [1, \frac{3}{2}]$

$$\ln(t) \le C\left(1 - \frac{1}{t}\right).$$

Comparison to another dilation invariant distance

Definition 3. Define the function $\rho_1 \colon \mathbb{R}_+ \times \mathbb{R}_+ \to [0, +\infty)$ by

$$\rho_1(x,y) = \frac{|x-y|}{\max(x,y)}$$

It can be shown that ρ_1 is a distance on \mathbb{R}_+ (we shall not prove it here).

Exercise 26. Express |x - y| through $\max(x, y)$ and $\min(x, y)$:

$$|x-y| =$$

Exercise 27. Express $\rho_1(x, y)$ through $\max(x, y)$ and $\min(x, y)$:

$$\rho_1(x,y) =$$

Exercise 28 (ρ_1 is dilation invariant). Let x, y, t > 0. Simplify:

$$\rho_1(tx,ty) =$$

Exercise 29. Let $u \ge 1$ Recall the inequality between $\ln(u)$ and $1 - \frac{1}{u}$.

Exercise 30. Let $x, y \in \mathbb{R}_+$. Compare $\rho(x, y)$ with $\rho_1(x, y)$.

Exercise 31. Prove that for all $x, y \in \mathbb{R}_+$ such that $\rho_1(x, y) \leq \frac{1}{2}$ the distance ρ can be bounded by a multiple of ρ_1 in the following manner:

$$\rho(x,y) \le C \,\rho_1(x,y).$$

Logarithmic distance on the positive half-line, page 9 of 10

Examples and counter-examples of sequences such that $ho(x_n,x_{n+1}) ightarrow 0$

For each one of the following sequences $(x_n)_{n=1}^{\infty}$ determine whether $\rho(x_n, x_{n+1}) \to 0$ or not.

Exercise 32. $x_n \coloneqq n$.

Exercise 33. $x_n \coloneqq n^2$.

Exercise 34. $x_n \coloneqq \ln(n)$.

Exercise 35. $x_n \coloneqq 2^n$.

Exercise 36. $x_n \coloneqq \frac{1}{2^n}$.

Exercise 37. $x_n \coloneqq \frac{1}{n}$.

Logarithmic distance on the positive half-line, page 10 of 10