A dilation-invariant distance on the positive half-line

Denote the interval $(0, +\infty)$ by \mathbb{R}_+ .

Definition 1. Define the function $\rho_1 \colon \mathbb{R}_+ \times \mathbb{R}_+ \to [0, +\infty)$ by

$$\rho_1(x,y) \coloneqq \frac{|x-y|}{\max(x,y)}.$$

Note 1. We threat max and min as functions of two real arguments:

$$\max(7,3) = 7, \qquad \min(7,3) = 3.$$

One can also threat them as functions of one set argument:

$$\max\{7,3\} = 7, \qquad \min\{7,3\} = 3.$$

Exercise 1. Fill the table:

	x-y	$\max(x,y)$	$\min(x,y)$
Case $x \ge y$:			
Case $x < y$:			

Exercise 2. Express |x - y| through $\max(x, y)$ and $\min(x, y)$:

$$|x - y| =$$

Exercise 3. Express $\rho_1(x, y)$ through $\max(x, y)$ and $\min(x, y)$:

$$\rho_1(x,y) = = 1 - \dots$$

A dilation-invariant distance on $(0, +\infty)$, page 1 of 5

We are going to prove that ρ_1 is a distance on \mathbb{R}_+ .

Exercise 4. List the conditions from the definition of distance (= metric). Check which of them are obvious for the function ρ_1 .

Exercise 5. We are going to prove the triangular inequality for ρ_1 . Write it for some points $x, y, z \in \mathbb{R}_+$:

Exercise 6. Rewrite the inequality from the previous exercise in the following form:

"something
$$\geq 0$$
"

$$\underbrace{\qquad \qquad }_{?} \ge 0. \tag{1}$$

Exercise 7. Write all the possible orderings of three numbers $x, y, z \in \mathbb{R}_+$:

1)
$$x \le y \le z;$$
 2) $x \le z \le y;$

Exercise 8. The left-hand side of (1) is symmetric with respect to the following variables (choose the correct answer):

 $\bigcirc x \text{ and } y$

 $\bigcirc x \text{ and } z$

 $\bigcirc y \text{ and } z$

Exercise 9. It follows from the previous exercise that without any loss of generality we can suppose that

So, it is sufficient to consider only the following orderings of x, z, y:

 $1) \qquad \leq \qquad \leq \qquad ;$

A dilation-invariant distance on $(0, +\infty)$, page 2 of 5

Exercise 10. Consider the first case from the Exercise 9. In this case x, y, z are ordered in the following manner:

$$\underbrace{}_{?} \leq \underbrace{}_{?} \leq \underbrace{}_{?} \leq \underbrace{}_{?}$$

Calculate the left-hand side of the formula (1):

$$\rho_{1}() + \rho_{1}() - \rho_{1}() =$$

$$= \begin{pmatrix} \\ \end{pmatrix} + \begin{pmatrix} \\ \end{pmatrix} - \begin{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$=$$

$$= \begin{pmatrix} () \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$$

The last expression is $\underbrace{}_{\geq \text{ or } \leq} 0$ by the condition (2).

Exercise 11. Calculate the left-hand side of (1) for other cases from the Exercise 9.

The distance ρ_1 is invariant under dilations (in other words, is homogeneous of degree 0)

Exercise 12. Let x, y, t > 0. Simplify:

$$\rho_1(tx, ty) =$$

Exercise 13. Let x, y > 0. Express $\rho_1(x, y)$ through $\rho_1\left(\frac{x}{y}, 1\right)$.

Pairs of the points that are δ -close with respect to ρ_1

Exercise 14. Let $\delta \in (0, 1)$. Find all $u \in [1, +\infty)$ such that $\rho_1(u, 1) \leq \delta$.

$$\begin{cases} u \ge 1 \\ \rho_1(u,1) \le 1 \end{cases} \iff \begin{cases} u \ge 1 \\ & \longleftrightarrow \end{cases}$$

Exercise 15. Let $\delta \in (0, 1)$. Find all $u \in (0, 1]$ such that $\rho_1(u, 1) \leq \delta$.

Exercise 16. Let $\delta \in (0, 1)$. Find all $u \in \mathbb{R}_+$ such that $\rho_1(u, 1) \leq \delta$.

Exercise 17. Let $\delta \in (0,1)$ and $x \in \mathbb{R}_+$. Find all $y \in [x, +\infty)$ such that $\rho_1(x, y) \leq \delta$.

Exercise 18. Let $\delta \in (0,1)$ and $x \in \mathbb{R}_+$. Find all $y \in (0,x]$ such that $\rho_1(x,y) \leq \delta$.

Exercise 19. Let $\delta \in (0,1)$ and $x \in \mathbb{R}_+$. Find all $y \in \mathbb{R}_+$ such that $\rho_1(x,y) \leq \delta$.

A dilation-invariant distance on $(0, +\infty)$, page 4 of 5

Examples and counter-examples of sequences such that $ho_1(x_n,x_{n+1}) ightarrow 0$

For each one of the following sequences $(x_n)_{n=1}^{\infty}$ determine whether $\rho_1(x_n, x_{n+1}) \to 0$ or not.

Exercise 20. $x_n \coloneqq n$.

Exercise 21. $x_n \coloneqq n^2$.

Exercise 22. $x_n \coloneqq \ln(n)$.

Exercise 23. $x_n \coloneqq 2^n$.

Exercise 24. $x_n \coloneqq \frac{1}{2^n}$.

Exercise 25. $x_n \coloneqq \frac{1}{n}$.

A dilation-invariant distance on $(0, +\infty)$, page 5 of 5