Bounded uniformly continuous functions

Objectives. To study the basic properties of the C^* -algebra of the bounded uniformly continuous functions on some metric space.

Requirements. Basic concepts of analysis: supremum, limit, continuity.

Exercise 1 (definition of metric). Let X be a set and $\rho: X \times X \to \mathbb{R}$ be a function. The function ρ is called *metric* (or *distance*) if the following conditions hold:

1.

2.

- 3. For all $x \in X$, $\rho(x, x) = 0$.
- 4. For all $x, y \in X$ such that $x \neq y$, $\rho(x, y) > 0$.

Modulus of continuity of a function

Denote by \mathbb{R}_+ the set $(0, +\infty)$.

Definition 1 (modulus of continuity of a function). Let $f: X \to \mathbb{C}$. Define the function $\omega_{\rho,f}: \mathbb{R}_+ \to [0, +\infty]$ by the following rule:

$$\omega_{\rho,f}(\delta) \coloneqq \sup\{|f(x) - f(y)| \colon \rho(x,y) \le \delta\}.$$

Exercise 2 (example). Consider the set $[0, +\infty)$ with the usual metric $d(x, y) \coloneqq |x - y|$. Define $f: [0, +\infty) \to \mathbb{C}$ by

$$f(x) \coloneqq \sqrt{x}.$$

For all $\delta > 0$ compute $\omega_{d,f}(\delta)$.

Bounded uniformly continuous functions, page 1 of 6

Monotonicity of the modulus of continuity

Notation 1 (subset of a set). Let A, B be some sets. We write $A \subset B$ iff A is a subset of B, that is, iff every element of A belongs to B. Note that for every set A the conclusion $A \subset A$ holds.

Definition 2 (types of monotone functions). Let $h: D \to [-\infty, +\infty]$ where $D \subset [-\infty, +\infty]$. The function h is called:

- increasing iff $\forall x, y \in D$ $(x < y \implies f(x) \le f(y));$
- decreasing iff $\forall x, y \in D$ $(x < y \implies f(x) \ge f(y));$
- strictly increasing iff $\forall x, y \in D$ $(x < y \implies f(x) < f(y));$
- strictly decreasing iff $\forall x, y \in D$ $(x < y \implies f(x) > f(y)).$

Exercise 3. Let $f: X \to \mathbb{C}, \delta_1, \delta_2 > 0, \delta_1 < \delta_2$.

1. Compare the following subsets of $X \times X$:

$$\left\{ (x,y) \in X^2 \colon \rho(x,y) \le \delta_1 \right\} \underbrace{\qquad \qquad}_{\subset \text{ or } \supset} \left\{ (x,y) \in X^2 \colon \rho(x,y) \le \delta_2 \right\}.$$

2. Compare the following subsets of $[0, +\infty]$:

$$\left\{ |f(x) - f(y)| \colon \rho(x, y) \le \delta_1 \right\} \underset{\subset \text{ or } \supset}{\underbrace{}} \left\{ |f(x) - f(y)| \colon \rho(x, y) \le \delta_2 \right\}.$$

3. Compare the following numbers:

Exercise 4. Let $f: X \to \mathbb{C}$. From to the previous exercise make a conclusion about the monotonicity of $\omega_{\rho,f}$.

Bounded uniformly continuous functions, page 2 of 6

Supremum-norm and bounded functions

Definition 3 (supremum-norm). Given a function $f: X \to \mathbb{C}$ denote by $||f||_{\infty}$ its supremum-norm:

$$||f||_{\infty} \coloneqq \sup_{x \in X} |f(x)|.$$

Exercise 5. Let $f, g: X \to \mathbb{C}$ be bounded functions and $\lambda \in \mathbb{C}$. Recall exact formulas or upper bounds for the supremum-norm of the functions f + g, λf , \overline{f} and fg (just write formulas without any proofs):

$$\|f + g\|_{\infty} \le \qquad \|\lambda f\|_{\infty} =$$
$$\|\overline{f}\|_{\infty} \qquad \|fg\|_{\infty}$$

Exercise 6. Prove that the space of the bounded functions $X \to \mathbb{C}$ is complete (with respect to the distance induced by the supremum-norm).

Arithmetic properties of the modulus of continuity

Exercise 7. Let $f, g: X \to \mathbb{C}$ be bounded functions. Find an upper bound of $\omega_{\rho,f+g}$ in terms of $\omega_{\rho,f}$ and $\omega_{\rho,g}$.

Exercise 8. Let $f: X \to \mathbb{C}$ and $\lambda \in \mathbb{C}$. Express $\omega_{\rho,\lambda f}$ through $\omega_{\rho,f}$ and λ .

Exercise 9. Let $f: X \to \mathbb{C}$. Express $\omega_{\rho,\overline{f}}$ through $\omega_{\rho,f}$.

Exercise 10. Let $f, g: X \to \mathbb{C}$ be bounded functions. Find an upper bound of $\omega_{\rho,fg}$ in terms of $\omega_{\rho,f}$, $\omega_{\rho,g}$, $||f||_{\infty}$ and $||g||_{\infty}$.

Uniform approximation and modulus of continuity

Exercise 11. Let $f, g: X \to \mathbb{C}$ and $x, y \in X$. Find an upper bound of |f(x) - f(y)| in terms of |g(x) - g(y)| and $||f - g||_{\infty}$.

Exercise 12. Let $f, g: X \to \mathbb{C}$. Find an upper bound of $\omega_{\rho,f}$ in terms of $\omega_{\rho,g}$ and $||f-g||_{\infty}$:

$$\omega_{\rho,f}(\delta) \leq$$

Bounded uniformly continuous functions, page 4 of 6

Uniformly continuous functions

Definition 4 (uniformly continuous function). A function $f: X \to \mathbb{C}$ is called *uniformly continuous* if

$$\lim_{\delta \to 0} \omega_{\rho, f}(\delta) = 0.$$

Exercise 13. Write the previous definition using quantifiers \forall and \exists :

 $\lim_{\delta \to 0} \omega_{\rho, f}(\delta) = 0 \qquad \xleftarrow{\operatorname{def}} \qquad \forall \varepsilon > 0$

Exercise 14. Simplify the previous definition using the fact that $\omega_{\rho,f}$ is monotone:

 $\lim_{\delta \to 0} \omega_{\rho,f}(\delta) = 0 \qquad \Longleftrightarrow \qquad \forall \varepsilon > 0$

Lipschitz-continuous functions

Exercise 15. Write the definition of Lipschitz-continuous function in terms of $\omega_{\rho,f}$.

Exercise 16. Prove that every Lipschitz-continuous function is uniformly continuous.

Bounded uniformly continuous functions

Definition 5. Denote by $UC_b(X, \rho, \mathbb{C})$ the set of the bounded uniformly continuous functions, with usual arithmetic operations, point-wise conjugation and supremum-norm. Breve notation: $UC_b(X)$.

Exercise 17. Prove that every uniformly continuous function $f: X \to \mathbb{C}$ is continuous.

Exercise 18. Prove that $UC_b(X)$ is closed under arithmetic operations and point-wise conjugation.

Exercise 19. Prove that $UC_b(X)$ is a closed subspace of the space of the bounded functions $X \to \mathbb{C}$.

Exercise 20. Recall the definition of C^* -algebra. Determine whether $UC_b(X)$ is a C^* -algebra or not.