Associated Laguerre polynomials: from the Rodrigues representation to the explicit formula

Objectives. Calculate the coefficients of the associated Laguerre polynomials $L_n^{(m)}$ starting from the Rodrigues representation:

$$L_n^{(m)}(x) \coloneqq \frac{1}{n!} x^{-m} e^x \frac{d^n}{dx^n} \left(e^{-x} x^{n+m} \right).$$

Requirements. General Leibniz rule, factorials.

Some products and factorials (short review)

Exercise 1. Simplify:

$$\frac{7!}{4!} = \frac{(n+2)!}{n!} =$$

Exercise 2. Express the following product as a ratio of two factorials:

$$\prod_{k=4}^{11} k = 4 \cdot 5 \cdots 11 =$$

Exercise 3. Let $p, q \in \{1, 2, ...\}$, p < q. Express the following product as a ratio of two factorials:

$$\prod_{k=p}^{q} k = p \cdots q =$$

Associated Laguerre polynomials, page 1 of 4

Derivatives of the exponential and monomial functions

Exercise 4. Calculate the first three derivatives of x^m $(m \ge 2)$:

$$\frac{d}{dx}(x^m) = (x^m)' =$$
$$\frac{d^2}{dx^2}(x^m) = (x^m)'' =$$
$$\frac{d^3}{dx^3}(x^m) = (x^m)''' =$$

In the last formula write the coefficient as a ratio of two factorials:

$$\frac{d^3}{dx^3}(x^m) =$$

Exercise 5. Calculate the kst derivative of x^m $(k \le m)$. Write the coefficient as a ratio of two factorials.

$$\frac{d^k}{dx^k}(x^m) = (x^m)^{(k)} =$$

Exercise 6. Calculate the kst derivative of e^{ax} , where a is a parameter:

$$\frac{d^k}{dx^k} (e^{ax}) =$$

Associated Laguerre polynomials, page 2 of 4

Derivatives of the product of the exponential function by the monomial function

Exercise 7. Calculate the first three derivatives of the product fg of two sufficiently smooth functions:

$$(fg)' =$$
$$(fg)'' =$$
$$(fg)''' =$$

Exercise 8. Write the general Leibniz rule:

$$(fg)^{(n)} = \sum_{k=1}^{n} fg^{(n)} = \sum_{k=1}^{n} fg^{(n)} fg^{(n)} fg^{(n)} fg^{(n)} = \sum_{k=1}^{n} fg^{(n)} fg^$$

Exercise 9. Expand the following derivative. Write the sum in such an order that the powers of x form an increasing sequence. Then factorize the exponential function and the maximal possible power of the monomial:

$$\left(e^{ax} x^{p}\right)' = \underbrace{\qquad}_{?} e^{ax} x^{p-1} + \underbrace{\qquad}_{?} e^{ax} x^{p} = e^{ax} \underbrace{\qquad}_{?} \left(\underbrace{\qquad}\right).$$

Exercise 10. Expand the following derivative using the general Leibniz rule. Write the sum in such an order that the powers of x form an increasing sequence. Then factorize the exponential function and the maximal possible power of the monomial:

$$\frac{d^n}{dx^n} \left(e^{ax} x^p \right) = \sum_{k=1}^{\infty} e^{ax} \sum_{x^2 = x^2} \sum_{k=1}^{\infty} \frac{1}{x^k} x^k.$$

Associated Laguerre polynomials, page 3 of 4

Definition of the associated Laguerre polynomials

Definition 1 (associated Laguerre polynomials). For all $n, m \in \{0, 1, 2, ...\}$, define the associated Laguerre polynomial $L_n^{(m)}$ by the formula:

$$L_n^{(m)}(x) := \frac{1}{n!} x^{-m} e^x \frac{d^n}{dx^n} \left(e^{-x} x^{n+m} \right).$$

Note 1. Formulas defining some polynomials in this manner (through *n*st derivatives of some products) are called *Rodrigues representation* or *Rodrigues formulas*.

Exercise 11. Expand the following derivative using the result of the Exercise 10. Factorize from the sum the exponential function and the maximal possible power of the monomial.

$$\frac{d^n}{dx^n} \left(e^{-x} x^{n+m} \right) = e^{-x} \qquad \sum$$

Exercise 12. Write the associated Laguerre polynomial $L_n^{(m)}$ in the explicit form $\sum_{k=0}^{?} ? x^k$:

$$L_n^{(\alpha)}(x) =$$

Exercise 13. Express the following derivative through the associated Laguerre polynomial $(n \leq p)$:

$$\frac{d^n}{dx^n} \Big(e^{-x} x^p \Big) =$$

Exercise 14. Let n < p and $h(x) \coloneqq \frac{d^n}{dx^n} \left(e^{-x} x^p \right)$. Calculate:

$$h(0) = \underbrace{\lim_{x \to +\infty} h(x)}_{?} = \underbrace{\lim_{x \to +\infty} h(x)}_{?}$$

Associated Laguerre polynomials, page 4 of 4