Laplace transform of $\frac{d^n}{dt^n} (e^{-t} t^m)$

Objectives. Recall the definition and some basic properties of the Laplace transform. Calculate the Laplace transform of the following function (n < m):

$$\frac{d^n}{dt^n} \Big(\mathrm{e}^{-t} t^m \Big).$$

Requirements. Integration by parts, change of variables, gamma function, associated Laguerre polynomials (Rodrigues' representation and explicit formula).

Definition of the Laplace transform

Exercise 1. Denote $(0, +\infty)$ by \mathbb{R}_+ . Let $f: \mathbb{R}_+ \to \mathbb{C}$ be a bounded continuous function. Recall the definition of its Laplace transform $\mathcal{L}f \colon \mathbb{R}_+ \to \mathbb{C}$:

$$(\mathcal{L}f)(s) \coloneqq \int f(t) \qquad dt$$

Note 1. The Laplace transform is defined not only for bounded continuous functions, but for our purposes it is sufficient to consider this special case. The Laplace transform $\mathcal{L}f$ is defined not only on \mathbb{R}_+ , but for our purposes it is sufficient to define it on \mathbb{R}_+ .

Note 2. Because of some applications of the Laplace transform, the domain of the original function f is called the *time domain*, and the domain of the function $\mathcal{L}f$ is called the frequency domain. The corresponding variables will be notated by t and s.

Exercise 2. Calculate the integral:

$$\int_{0}^{+\infty} e^{-x} dx =$$

Exercise 3. Calculate the Laplace transform of the function $t \mapsto e^{-t}$:

$$\int e^{-t} \qquad dt =$$

Laplace transform of $\frac{d^n}{dt^n} (e^{-t} t^m)$, page 1 of 6

Frequency differentiation

Exercise 4. Let $F \coloneqq \mathcal{L}f$. Express F'(s) as the Laplace transform of a certain function.

$$F'(s) = \int \frac{d}{ds} \left(\int dt = \int dt. \right) dt$$

Exercise 5. Let $m \in \{1, 2, ...\}$. Express the Laplace transform of the function $t \mapsto t^m f(t)$ through the function $F \coloneqq \mathcal{L}f$.

$$\int t^m f(t) \qquad dt =$$

Exercise 6. Let $m \in \{1, 2, ...\}$. Calculate the Laplace transform of the function $t \mapsto t^m e^{-t}$ using the results of the previous exercises:

$$\int t^m e^{-t} \qquad dt =$$

Exercise 7. Recall the definition of the gamma function:

$$\Gamma(x) = \int dt.$$

Exercise 8. Let $\alpha, \beta > 0$. Express the following integral through the gamma function using a suitable change of variables:

$$\int_{0}^{+\infty} t^{\alpha} e^{-\beta t} dt =$$

Exercise 9. Let $m \in \{1, 2, ...\}$. Calculate the Laplace transform of the function $t \mapsto t^m e^{-t}$ using the gamma function. Compare the answer with the result of the Exercise 6.

$$\int_{0}^{+\infty} t^m e^{-t} \qquad dt =$$

Laplace transform of $\frac{d^n}{dt^n} (e^{-t} t^m)$, page 2 of 6

Time differentiation

Exercise 10. Let $f : \mathbb{R}_+ \to \mathbb{C}$ be a continuously differentiable function such that f and f' are bounded on \mathbb{R}_+ . Moreover suppose that the limit

$$f(0^+) \coloneqq \lim_{t \to 0^+} f(t)$$

exists and is finite. Denote the Laplace transform of f by F. Integrating by parts calculate the Laplace transform of f'.

$$\int f'(t) \qquad dt =$$

Exercise 11. Let $f: \mathbb{R}_+ \to \mathbb{C}$ be a twice continuously differentiable function such that f, f' and f'' are bounded on \mathbb{R}_+ . Moreover suppose that the limits

$$f(0^+) \coloneqq \lim_{t \to 0^+} f(t), \qquad f'(0^+) \coloneqq \lim_{t \to 0^+} f'(t)$$

exist and are finite. Denote the Laplace transform of f by F. Calculate the Laplace transform of f''.

$$\int f''(t) \qquad dt =$$

Laplace transform of
$$\frac{d^n}{dt^n} (e^{-t} t^m)$$
, page 3 of 6

Exercise 12. Let $f: \mathbb{R}_+ \to \mathbb{C}$ be a *n* times continuously differentiable function such that $f, f', \ldots, f^{(n)}$ are bounded on \mathbb{R}_+ . Moreover suppose that the limits

$$f(0^+) \coloneqq \lim_{t \to 0^+} f(t), \qquad f'(0^+) \coloneqq \lim_{t \to 0^+} f'(t), \qquad \dots, \qquad f^{(n-1)}(0^+) \coloneqq \lim_{t \to 0^+} f^{(n-1)}(t)$$

exist and are finite. Denote the Laplace transform of f by F. Generalazing the results of the previous exercises write a formula for the Laplace transform of $f^{(n)}$.

$$\int f^{(n)}(t) \qquad dt = \tag{1}$$

Exercise 13. Prove by mathematical induction the formula (1).

Exercise 14. Let $f: \mathbb{R}_+ \to \mathbb{C}$ be a *n* times continuously differentiable function such that $f, f', \ldots, f^{(n)}$ are bounded on \mathbb{R}_+ . Moreover suppose that the following limits are zero:

$$\lim_{t \to 0^+} f(t) = 0, \qquad \lim_{t \to 0^+} f'(t) = 0, \qquad \dots, \qquad \lim_{t \to 0^+} f^{(n-1)}(t) = 0.$$

Denote the Laplace transform of f by F. Calculate the Laplace transform of $f^{(n)}$.

$$\int f^{(n)}(t) \qquad dt =$$

Laplace transform of $\frac{d^n}{dt^n} (e^{-t} t^m)$, page 4 of 6

${\rm Laplace\ transform\ of}\quad \frac{d^n}{dt^n} \big({\rm e}^{-t}\ t^m\big)$

Let $m \in \{1, 2, ...\}$. In the exercises of this section we work with the function $h: \mathbb{R}_+ \to \mathbb{C}$ defined by

$$h(t) \coloneqq t^m e^{-t}$$

Definition 1 (associated Laguerre polynomials). The associated Laguerre polynomials $L_n^{(p)}$ can be defined by the following formula (*Rodrigues' representation*):

$$L_{n}^{(p)}(t) \coloneqq \frac{1}{n!} t^{-p} e^{t} \frac{d^{n}}{dt^{n}} \left(e^{-t} t^{n+p} \right).$$
(2)

Note that in the notation $L_n^{(p)}$ the superscript $^{(p)}$ does not refer to the *p*-st derivative.

Exercise 15. Recall the Leibniz rule for the second derivative of the product of two functions:

$$(fg)'' =$$

Exercise 16. Calculate $L_2^{(p)}$ (apply the Leibniz rule and simplify the result):

$$L_2^{(p)}(t) = \frac{1}{2} t^{-p} e^t \left(e^{-t} t^{p+2} \right)'' =$$

Note 3. Applying the Leibniz rule for the *n*th derivative of the product of two functions one can easily prove that the function $L_n^{(p)}$ defined by is a polynomial and calculate its coefficients. We shall not do it here.

Exercise 17. Generalazing the result of the exercise 16, complete the following statement:

The function
$$L_n^{(p)}$$
 defined by (2) is a polynomial of degree $\underbrace{}_?$

Laplace transform of
$$\frac{d^n}{dt^n} (e^{-t} t^m)$$
, page 5 of 6

Exercise 18. Recall the definitions of h and $L_n^{(p)}$:

$$h(t) = L_n^{(p)}(t) =$$

Exercise 19. For every $n \in \{0, 1, 2, ..., m - 1\}$ express $h^{(n)}$ through some associated Laguerre polynomial.

$$h^{(n)}(t) =$$

Exercise 20. Let $n \in \{0, 1, 2, \dots, m-1\}$. Calculate the limit:

$$h^{(n)}(0^+) \coloneqq \lim_{t \to 0^+} h^{(n)}(t) =$$

Exercise 21. Let $n \in \{0, 1, 2, \dots, m\}$. Calculate the limit:

$$h^{(n)}(+\infty) \coloneqq \lim_{t \to +\infty} h^{(n)}(t) =$$

Exercise 22. Let $n \in \{0, 1, 2, ..., m\}$. Determine if $h^{(n)}$ is bounded or not.

Exercise 23. Let $n \in \{0, 1, 2, ..., m\}$. Calculate the Laplace transform of $h^{(n)}$:

$$\int \frac{d^n}{dt^n} \left(e^{-t} t^m \right) \qquad dt =$$

Laplace transform of
$$\frac{d^n}{dt^n} (e^{-t} t^m)$$
, page 6 of 6