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Banach algebras (review)

Let A be a normed complex vector space and at the same time an algebra.
It is said that A is a normed algebra if the norm in A is submultiplicative:

Va,be A |ab] < |lall[[b]-

A normed algebra A is called a Banach algebra
if A is complete with respect to the distance induced by the norm.

An algebra A is called unital if there exists e in A
such that ae = a for each a in A.
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Banach algebras (review)

Main examples of unital Banach algebras:
@ Algebra Cp(T,C) of bounded continuous functions T — C,
where T is a topological space.

o Algebra B(X, X) of bounded linear operators
acting in a Banach space X.

For simplicity, in this talk we deal with commutative Banach algebras .
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Gelfand transform (review)

Let A be a commutative Banach algebra.
A character (or multiplicative functional ) of A
is a non-zero algebra homomorfism A — C.

Denote by M 4 the set of the characters of A.
M 4 is provided with the weak-* topology.
M4 is a locally compact Hausdorff space.

For each ain A, its Gelfand transform a: M 4 — C is defined by

It is known that 3 € Go(M 4).

Putl: A — Go(My), IN'a) =3a.
Then T is a homomorfism of Banach algebras, and [|3]| < ||4]|.
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Nets and convergence (review)

The concept of nets generalizes the concept of sequences.

Let J be a set and > be a partial order on J.
It is said that (J,>) is a directed set if

Vp,q € J dred (r=p) AN (r=q).

A net in a topological space (X, 7) is a function s: J — X,
there (J, =) is a directed set. We write (s;);cy instead of s.

Let (X, 7) be a topological space, (s;j)jcs be a net and y € X.
It is said that the net (sj)jes converges to y iff

VWer dked Vji=k sie V.
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Main definitions

Let A be a commutative Banach algebra.

Definition (approximate identity)

A net (ej)jey in Ais called an approximate identity in A
if for every a in A

lim ae; = a.

jeJ

Notation: (ej)jcs € Approxld(.A).

Definition (approximately invertible elements)

Let x € A. We say that x is approximately invertible
if there exists a net (uj);c, such that (xuj)jc; € Approxld(A).
Notation: x € Approxinv(.A).
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Situation in unital Banach algebras (Theorem 1)

Let x € A, where A is a unital Banach algebra with identity e.

— A(y;); li i=e
JyeAd xy =€ <y (¥j)jes J.'E”JXYJ

x € Approxld(A) —————>  clos(xA) = A
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Approximate identities in Gy(R)

Co(R) := the continuous functions on R that tend to zero at occ.
K = the compact subsets of R.

Criterion of approximate identity in Co(R):

(€)jes € Approxld(Co(R))

VK € K elk = 1k
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Example of approximate identity in Co(R)

1, lt] < J;
g(t) =qj+1—[t], j<[t|<j+1;
0, |t| >j+1.
Graph of ¢
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Criterion of approximate invertibility in A = Cy(R)

f € Approxinv(A)

<—) VteR f(t)#£0

14 / 42



Example of approximately invertible element in Cy(R)

1/f is unbounded
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Example of approximately invertible element in Cy(R)

gs = e3/f

fgs=e3
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Small disk algebra

D:={zeC: |z| <1}

Disk algebra A = all continuous functions clos(D) — C
that are holomorphic in D:

A= {f € C(clos(D)): f|p € H(D)}.

Small disk algebra Ap := all continuous functions clos(D) — C
that are holomorphic in ID and vanish at 0:

Ay = {f € A: f(0)=0}.

Ao is a non-unital closed subalgebra of C(clos(D)).
Ao is generated by the monomial g(z) = z.
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Generator of the small disk algebra

Plot of the absolute value of g(z) := z.
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Example of element of A

Plot of the absolute value of f(z) := 2.

19 / 42



Collapse of ideals and loss of identity

Schwarz lemma easily yields the following properties of Ag.

Proposition

For every f in Ay, the ideal f Ay is not dense in Ay.

Proposition

The algebra Ao has no approximate identities.

As a consequence, Ag has no approximately invertible elements.
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There are elements in Ag
with non-vanishing Gelfand transforms

For every point t in clos(DD), the evaluation at t is a character of A:
() = f(t) (t € clos(D), fe€A).
Moreover, all characters of the disk algebra all evaluation functionals:
M, = clos(D).

Therefore,
My, = clos(D) \ {0}.

Recall that g(z) := z.
The Gelfand transform of g does not vanish, but g ¢ ApproxInv(Ap).
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Convolution algebra L*(R)

Provide the Banach space L!(R) with the convolution operation:

(F+£)() = [ Flx=y)ely) .
L1(R) is a non-unital commutative Banach algebra.
For every f in L}(R), denote by f the Fourier transform of f:
) = / F(x) e €% dx.
R
Convolution theorem: o
fxg="~g.

The Fourier transform on L!(R) coincides with the Gelfand transform.
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Dirac sequences

Definition
A sequence (ej)jen in L1(R) is a Dirac sequence if:
Q ej(x) >0 forevery x eR, jeN;

Q for every j € N,
/ g(x)dx =1,
R

© for every 6 > 0,

lim ei(x)dx =0.
A0 s (%)

Every Dirac sequence is an approximate identity in L}(R).
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Example of Dirac sequence (Fejér kernel)

(sin(jx))>
ji=1
In this example the supports of € are compact:
~ 8 <2
é\j(t) — 2_1’ ’ | — J'v
0, [t > 2j.
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Wiener's Division Lemma

o
>_
el
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Criterion of approximate invertibility in A = L}(R)

f € Approxinv(.A)

e

Proof of the implication 0 ¢ f(R) = f € Approxinv(A).
Let (ej)jen be a Dirac sequence such that supp(&;) € K.
Using Wiener's Division Lemma we construct g; € L1(R) such that

e = f xgj. O
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Example of element in ApproxInv(L}(R))

1/7

x

0.6985

h1 such that i

f*hlzel
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Example of element in ApproxInv(L}(R))

1/7

x

21.0312

h3 such that

f*h3:e3
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Algebra of compact operators in a Hilbert space

Let H be a separable infinite-dimensional Hilbert space.
K(#) = the compact operators acting in H.

K(H) is a non-unital non-commutative Banach algebra.
Moreover, K(#) is C*-algebra.

Recall one important property of compact operators.
If (5,)52, is a sequence of bounded linear operators in #,
Spv — 0 for each v in H and T € K(H), then

ISnT|| — O, I TSn|| — O.
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Approximate identity associated to an orthonormal basis

Let (bn)5; be an orthonormal basis in . Then

YveH v = Z(V, bj>bj
j=1

J
For each min {1,2,3,...} define Py,: H — H by

m

Pmv = Z<V7 bj) b;.
j=1
For example,
Vv=oa1b +asby +azbs+ ... —> Pov = a1 b1 + anbs.
P, is the orthogonal projection onto span(by, ..., by).
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Approximate identity associated to an orthonormal basis
Pnv = Z(v, bj) b;.
j=1

Proposition
(Pm)%_ € Approxld(K(H)). J

Proof. The sequence (Pp)men converges strongly to the identity operator:
VveH (Pm—1Nv —0.
If T € K(H), then

|PmT—T| —0 and |TPm — T|| — 0. O
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Singular value decomposition of compact operators

Let T € K(H), r = rank(T).

We put r = +o0, if T(H) is infinite-dimensional.

There exist two orthonormal sequences (a;)/_1 y (bj)j—1
and a sequence (s;)i_; such that

s1>sp>s3>...>0, lim s; =0,
J—>OO
Tay = s1by, Tar = spbo, Taz = s3bz,

Therefore, for every v in H,
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Left approximate invertibility in K(H)

Let T € K(H), with the following SVD:

r

Tv = Zsj(v, aj) b.

j=1

34 /42

Then

T € Approxinv, (K(H))



Left approximate invertibility in K(H)

Idea of proof

Suppose that ker(T) = {0}. Then r = 400 and (aj)j-;of is total.
Define U,,:

T Us
a1 — s1by by — 31/51
as — SHbo by — 32/52
az +— S3bs b3 — 33/53
as —r S4b4 b4 — 0
as — s5bg bs — 0
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Left approximate invertibility in K(H)

Idea of proof

Suppose that ker(T) = {0}. Then r = 400 and (aj)j-;of is total.
Define U,,:
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Right approximative invertibility in K(H)
Let T € K(H), and let T have the following SVD:

r

Tv = Zsj(v, aj) b.

j=1
(bj)i— is total

—~—
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Theorem 2

Let A be a commutative Banach algebra and x € A.
Suppose that A has an approximate identity.

-

!

1

s g0
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Idea of proof:
if xA is dense in A, then x is approximately invertible

Let (ej)jcs be an approximate identity of A.
Consider the product of directed sets J x N.
For every j € J and every k in N choose uj , € A such that

llxuj . — €l < —.

k
Then (xuj k)(jk)esxn € Approxld(A).
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Theorem 2 for non-commutative case

Suppose that A is a Banach algebra and x € A.
Moreover, let A have an approximate identity.

x € Approxinvg(A)

clos(xA) = A

x does not belong to any
maximal modular right ideal
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Relation with topological zero divisors (Theorem 3)

A is a non-unital
Banach algebra

exists a net (zj)jcy
such that z; /4 0,
xzi — 0

x € ApproxInvp(A)
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