Radial Toeplitz operators on the unit ball in \mathbb{C}^n and slowly oscillating sequences

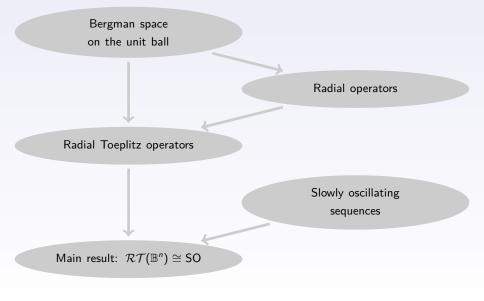
Egor Maximenko

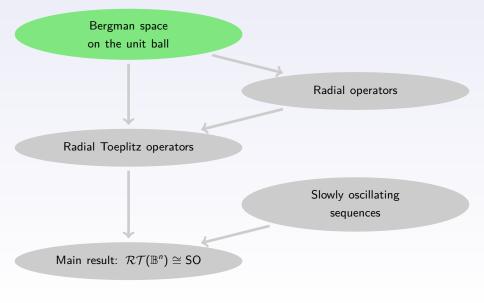
joint work with Nikolai Vasilevski and Sergey Grudsky

Instituto Politécnico Nacional, ESFM, México

Norte–Sur 2012 CINVESTAV del IPN (Mexico), November 29 of 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●





Notation: unit ball and normalized Lebesgue measure

Usual inner product and Euclidean norm in \mathbb{C}^n :

$$\langle z, w \rangle \coloneqq \sum_{j=1}^n z_j \overline{w_j}, \qquad \|z\| \coloneqq \sqrt{\langle z, z \rangle}.$$

Unit ball in \mathbb{C}^n :

$$\mathbb{B}^n \coloneqq \big\{ z \in \mathbb{C}^n \colon \| z \| < 1 \big\}.$$

dv := the Lebesgue measure in $\mathbb{C}^n = \mathbb{R}^{2n}$ normalized such that $v(\mathbb{B}^n) = 1$.

$$dv = \frac{n!}{\pi^n} dx_1 dy_1 \cdots dx_n dy_n.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = のへの

Bergman space on the unit ball

 $L^2(\mathbb{B}^n) := L^2(\mathbb{B}^n, dv) :=$ the space of square integrable functions, provided with the usual inner product:

$$\langle f,g\rangle := \int_{\mathbb{B}^n} f\,\overline{g}\,dv, \qquad \|f\|_2 := \sqrt{\langle f,f\rangle}.$$

 $\mathcal{A}(\mathbb{B}^n) \coloneqq$ the set of holomorph functions $\mathbb{B}^n \to \mathbb{C}$.

 $\mathcal{A}^{2}(\mathbb{B}^{n}) := L^{2}(\mathbb{B}^{n}) \cap \mathcal{A}(\mathbb{B}^{n}),$ is called the Bergman space over \mathbb{B}^{n} .

 $\mathcal{A}^2(\mathbb{B}^n)$ is a closed subspace of $L^2(\mathbb{B}^n)$ and therefore is a Hilbert space.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Canonical basis in $\mathcal{A}^2(\mathbb{B}^n)$

 $\mathbb{N} \coloneqq \{0, 1, 2, \ldots\}.$

Given a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, recall usual notation for the sum of components, the factorial and the power:

$$|\alpha| := \sum_{j=1}^n \alpha_j, \qquad \alpha! := \prod_{j=1}^n \alpha_j!, \qquad z^{\alpha} := \prod_{j=1}^n z_j^{\alpha_j}.$$

Denote by e_{α} , where $\alpha \in \mathbb{N}^n$, the normalized monomials:

$$e_{\alpha}(z) \coloneqq \sqrt{\frac{(n+|\alpha|)!}{n! \, \alpha!}} \, z^{\alpha}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The family $(e_{\alpha})_{\alpha \in \mathbb{N}^n}$ is an orthonormal basis in $\mathcal{A}^2(\mathbb{B}^n)$.

Bergman kernel and Bergman projection

For every $z \in \mathbb{B}^n$, the Bergman kernel at the point z is the function

$$\mathcal{K}_{z}(w) = \sum_{\alpha \in \mathbb{N}^{n}} \overline{e_{\alpha}(z)} e_{\alpha}(w) = \left(rac{1}{(1 - \langle w, z \rangle)^{n+1}}
ight).$$

Reproduction property:

$$\forall f \in \mathcal{A}^2(\mathbb{B}^n) \qquad \forall z \in \mathbb{B}^n \qquad f(z) = \langle f, K_z \rangle.$$

Orthogonal Bergman projection of $L^2(\mathbb{B}^n)$ over $\mathcal{A}^2(\mathbb{B}^n)$:

$$\forall z \in \mathbb{B}^n \qquad \forall f \in L^2(\mathbb{B}^n) \qquad (Pf)(z) = \langle f, K_z \rangle$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへぐ

Basic projections in $\mathcal{A}^2(\mathbb{B}^n)$

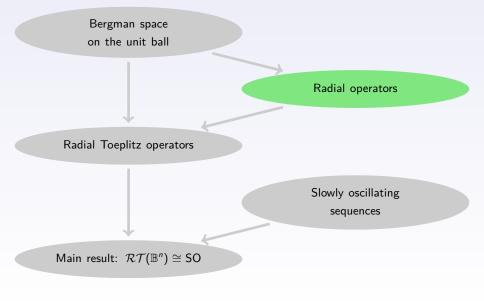
For every $\alpha \in \mathbb{N}^n$, denote by P_α the orthogonal projection over e_α :

$$P_{\alpha} \colon \mathcal{A}^{2}(\mathbb{B}^{n}) \to \mathcal{A}^{2}(\mathbb{B}^{n}),$$
$$P_{\alpha}f := \langle f, e_{\alpha} \rangle e_{\alpha}.$$

Since the family $(e_{\alpha})_{\alpha \in \mathbb{N}^n}$ is an orthonormal basis of $\mathcal{A}^2(\mathbb{B}^n)$, every function $f \in \mathcal{A}^2(\mathbb{B}^n)$ can be expanded into the following serie converging in the norm $\|\cdot\|_2$:

$$f=\sum_{\alpha\in\mathbb{N}^n}P_{\alpha}f.$$

(日)



Unitary group

The unitary group \mathcal{U}_n of degree *n*:

$$\mathcal{U}_n := \Big\{ U \in \mathbb{C}^{n \times n} \colon U^* U = I_n \Big\}.$$

Examples of unitary matrices:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{i\varphi} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \in \mathcal{U}_4, \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\varphi & 0 & -\sin\varphi \\ 0 & 0 & 1 & 0 \\ 0 & \sin\varphi & 0 & \cos\varphi \end{bmatrix} \in \mathcal{U}_4.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Radial operators in $\mathcal{A}^2(\mathbb{B}^n)$

The unitary group U_n acts on the Bergman space A^2 as follows: for every unitary matrix $U \in U_n$ define

$$\Psi_U \colon \mathcal{A}^2 \to \mathcal{A}^2,$$

 $(\Psi_U f)(z) \coloneqq f(U^* z)$

Note that Ψ_U is a unitary operator.

A bounded operator $S: \mathcal{A}^2(\mathbb{B}^n) \to \mathcal{A}^2(\mathbb{B}^n)$ is called radial if it commutes with Ψ_U for every unitary matrix U:

$$S$$
 is radial $\stackrel{\text{def}}{\longleftrightarrow} \forall U \in \mathcal{U}_n \qquad S\Psi_U = \Psi_U S.$

Radial operator asociated to a bounded sequence

Given a bounded sequence $\lambda = (\lambda_j)_{j \in \mathbb{N}}$, define the operator R_{λ} : $\mathcal{A}^2(\mathbb{B}^n) \to \mathcal{A}^2(\mathbb{B}^n)$ by the rule:

$$R_{\lambda}f := \sum_{\alpha \in \mathbb{N}^n} \lambda_{|\alpha|} P_{\alpha}f = \sum_{j=0}^{\infty} \lambda_j \left(\sum_{|\alpha|=j} P_{\alpha}f\right).$$

For example, if n = 2, then

$$R_{\lambda}f = \lambda_{0}P_{(0,0)}f + \lambda_{1}P_{(1,0)}f + \lambda_{1}P_{(0,1)}f + \lambda_{2}P_{(2,0)}f + \lambda_{2}P_{(1,1)}f + \lambda_{2}P_{(0,2)}f + \dots$$

Radial operator asociated to a bounded sequence

$$R_{\lambda}f := \sum_{\alpha \in \mathbb{N}^n} \lambda_{|\alpha|} P_{\alpha}f = \sum_{j=0}^{\infty} \lambda_j \left(\sum_{|\alpha|=j} P_{\alpha}f \right).$$

If n = 3, then

$$\begin{aligned} R_{\lambda}f &= \lambda_{0}P_{(0,0,0)}f \\ &+ \lambda_{1}\left(P_{(1,0,0)} + P_{(0,1,0)} + P_{(0,0,1)}\right)f \\ &+ \lambda_{2}\left(P_{(2,0,0)} + P_{(1,1,0)} + P_{(1,0,1)} + P_{(0,2,0)} + P_{(0,1,1)} + P_{(0,0,2)}\right)f \\ &+ \dots \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note that

- R_{λ} is diagonal with respect to the canonical basis,
- the eigenvalue associated to e_{α} depends only on $|\alpha|$.

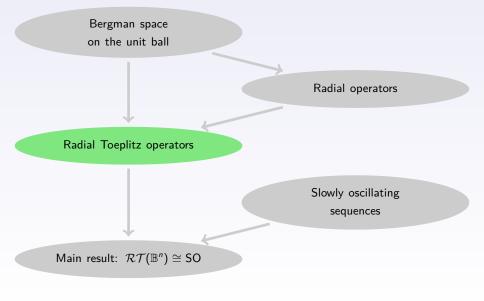
It can be shown that R_{λ} is a radial operator.

Criterion for an operator in $\mathcal{A}^2(\mathbb{B}^n)$ to be radial

TheoremLet $S: \mathcal{A}^2(\mathbb{B}^n) \to \mathcal{A}^2(\mathbb{B}^n)$ be a bounded linear operator. ThenS is radial $\exists \lambda \in \ell^{\infty}$ $S = R_{\lambda}.$

In other words, a bounded linear operator S is radial

- \iff it satisfies two conditions:
 - it is diagonal with respect to the canonical basis $(e_{\alpha})_{\alpha\in\mathbb{N}^n}$;
 - the eigenvalue of S associated to e_{α} depends only on $|\alpha|$.



Toeplitz operators on $\mathcal{A}^2(\mathbb{B}^n)$

Given a function $g \in L^{\infty}(\mathbb{B}^n)$, the Toeplitz operator $T_g \colon \mathcal{A}^2(\mathbb{B}^n) \to \mathcal{A}^2(\mathbb{B}^n)$ is defined by:

 $T_g f \coloneqq P(gf).$

In this work we restrict ourself to radial Toeplitz operators.

Criterion of radial Toeplitz operators

 Ze-Hua Zhou, Wei-Li Chen, Xing-Tang Dong (2011). The Berezin transform and radial operators on the Bergman space of the unit ball. Complex Analysis and Operator Theory. http://dx.doi.org/10.1007/s11785-011-0145-2

Theorem (Zhou,	ou, Chen, Dong 2011)		
Let $g \in L^{\infty}(\mathbb{B}^n).$ Then			
	T _g is radial	\iff	g is radial.

The condition "g is radial" means that there exists a function $a \in L^{\infty}[0,1]$ such that

$$g(z) = a(\|z\|)$$
 a.e. $z \in \mathbb{B}^n$.

Sequence of eigenvalues of a radial Toeplitz operators

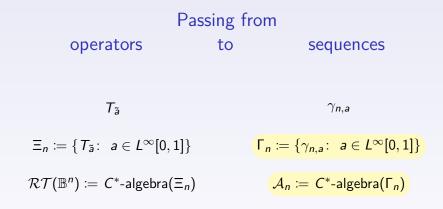
Sergei Grudsky, Alexei Karapetyants, Nikolai Vasilevski (2003). Toeplitz operators on the unit ball in Cⁿ with radial symbols. Journal of Operator Theory.

Theorem (Grudsky, Karapetyants, Vasilevski 2003) Let $a \in L^{\infty}[0, 1]$. Denote by \tilde{a} the radial extention of a to the unit ball:

$$\tilde{a} \colon \mathbb{B}^n \to \mathbb{C}, \qquad \tilde{a}(z) \coloneqq a(\|z\|).$$

Then the operator $T_{\tilde{a}}$ is radial: $T_{\tilde{a}} = R_{\gamma_{n,a}}$, and the sequence $\gamma_{n,a}$ of its eigenvalues can be computed by the formula:

$$\gamma_{n,a}(j)=(n+j)\int_0^1 a(\sqrt{r})\,r^{n+j-1}\,dr.$$



The mapping $T_{\tilde{a}} \mapsto \gamma_{n,a}$ is linear, multiplicative and isometric.

The C^{*}-algebras $\mathcal{RT}(\mathbb{B}^n)$ and \mathcal{A}_n are isometrically isomorphic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Sequences of eigenvalues of radial Toeplitz operators

$$\gamma_{n,a}(j) = (n+j) \int_0^1 a(\sqrt{r}) r^{n+j-1} dr \in \ell^{\infty}.$$
$$\Gamma_n := \{\gamma_{n,a} \colon a \in L^{\infty}[0,1]\} \subset \ell^{\infty}.$$
$$\mathcal{A}_n := C^*\text{-algebra}(\Gamma_n) \subset \ell^{\infty}.$$

The set Γ_n can be described in terms of iterated differences, but this description is rather complicated.

Problems:

- (A) Describe the closure of Γ_n in ℓ^{∞} .
- (B) Describe the C^* -algebra \mathcal{A}_n generated by Γ_n .

Sequences of eigenvalues of radial Toeplitz operators

$$\gamma_{n,a}(j) = (n+j) \int_0^1 a(\sqrt{r}) r^{n+j-1} dr \in \ell^{\infty}.$$
$$\Gamma_n := \{\gamma_{n,a} \colon a \in L^{\infty}[0,1]\} \subset \ell^{\infty}.$$
$$\mathcal{A}_n := C^*\text{-algebra}(\Gamma_n) \subset \ell^{\infty}.$$

The set Γ_n can be described in terms of iterated differences, but this description is rather complicated.

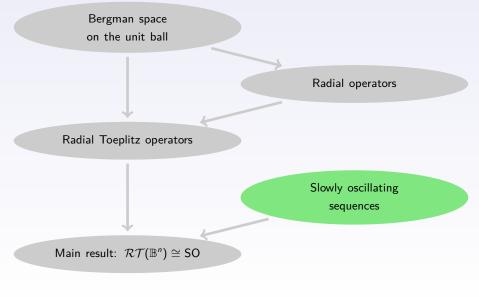
Problems:

- (A) Describe the closure of Γ_n in ℓ^{∞} .
- (B) Describe the C^* -algebra \mathcal{A}_n generated by Γ_n .

It results that the problems (A) and (B) have the same answer:

slowly oscillating sequences.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少♀?



Slowly oscillating sequences

Were introduced by Robert Schmidt in 1925:

Robert Schmidt (1925):

Über divergente Folgen and lineare Mittelbildungen, Mathematische Zeitschrift.

http://dx.doi.org/10.1007/BF01479600

$$\mathsf{SO} := \Big\{ \lambda \in \ell^{\infty} \colon \lim_{\substack{j+1\\k+1} \to 1} |\lambda_j - \lambda_k| = 0 \Big\}.$$

Slowly oscillating sequences have many applications in Tauberian theory.

Formal definition of slowly oscillating sequences

"Logarithmic metric" in \mathbb{N} :

$$\rho(j,k) \coloneqq \left|\log(j+1) - \log(k+1)\right| = \log \frac{\max\{j+1,k+1\}}{\min\{j+1,k+1\}}.$$

Modulus of continuity of a sequence $\lambda = (\lambda_j)_{j \in \mathbb{N}}$ with respect to ρ :

$$egin{aligned} &\omega_{
ho,\lambda}\colon \ [0,+\infty) o [0,+\infty], \ &\omega_{
ho,\lambda}(\delta)\coloneqq \sup\left\{ |\lambda_j-\lambda_k|\colon \
ho(j,k)\leq \delta
ight\}. \end{aligned}$$

Slowly oscillating sequences

are bounded uniformly continuous functions $(\mathbb{N}, \rho) \to \mathbb{C}$:

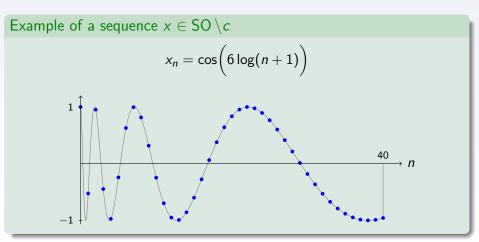
$$\mathsf{SO} \coloneqq \left\{ \lambda \in \ell^\infty \colon \lim_{\delta \to 0^+} \omega_{
ho,\lambda}(\delta) = 0 \right\}$$

▲□▶▲□▶▲□▶▲□▶ = のへぐ

Examples of sequences in SO

Every convergent sequence belongs to SO:

 $c \subset SO$.



▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

Example of a sequence that does not belong to SO



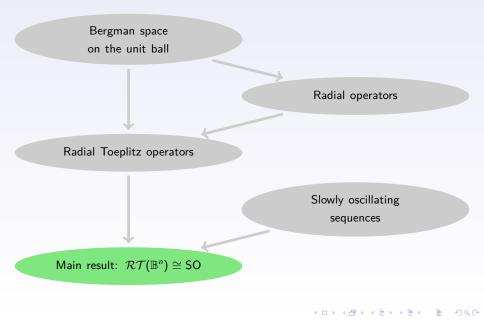
This sequence satisfies the property

$$|x_{j+1}-x_j| o 0$$
 as $j o \infty$,

but does not belong to the class SO of Schmidt:

$$|x_j - x_k|
eq 0$$
 as

$$\frac{j+1}{k+1} \to 1.$$



Approximation tecnics by Daniel Suárez

Daniel Suárez (2008):

The eigenvalues of limits of radial Toeplitz operators. Bulletin of the London Mathematical Society. http://dx.doi.org/10.1112/blms/bdn042

(For the one-dimensional case)

Theorem (Suárez, 2008)

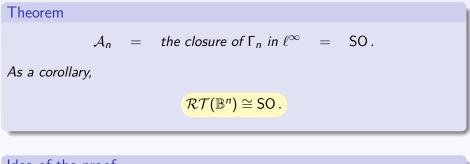
The C^{*}-algebra A_1 generated by Γ_1 coincides with the closure of Γ_1 and is equal to the closure of the class d_1 , where

$$d_1 \coloneqq \Big\{ y \in \ell^\infty \colon \quad \sup_{j \ge 0} \left((j+1) \left| y_{j+1} - y_j \right| \right) < +\infty \Big\}.$$

The proof of Suárez is based on the so-called *m*-Berezin transform.

Main result

Recall that \mathcal{A}_n is the C^* -algebra generated by $\Gamma_n = \{\gamma_{n,a}: a \in L^{\infty}[0,1]\}.$



Idea of the proof.

$$\mathcal{RT}(\mathbb{B}^n)\cong \mathcal{A}_n=\mathcal{A}_1=\overline{d_1}=\mathsf{SO}$$
.

A D > 4 目 > 4 目 > 4 目 > 9 Q Q

Example

Define a sequence $\lambda = (\lambda_j)_{j \in \mathbb{N}}$ by

$$\lambda_j \coloneqq \exp\left(rac{\mathrm{i}}{3\pi}\ln^2(j+n)
ight).$$

Then $\lambda \in \ell^{\infty}(\mathbb{N}) \setminus SO(\mathbb{N})$ and there exists a function $a \in L^{1}([0,1], r dr)$ such that $\lambda = \gamma_{n,a}$.

So, the corresponding radial Toeplitz opeator $T_{\tilde{a}}$ is bounded, but does not belong to $\mathcal{RT}(\mathbb{B}^n)$.