Programación: ortogonalización con el algoritmo modificado de Gram–Schmidt

Objetivos. Aplicar el algoritmo modificado de Gram–Schmidt a cuatro vectores, luego generalizar la idea al caso de m vectores.

Requisitos. Proyección ortogonal de un vector al subespacio generado por un vector no nulo, estructura del producto de matrices, ciclos de tipo for.

Proyección ortogonal de un vector al subespacio generado por un vector no nulo (repaso)

1. Proyección ortogonal sobre el subespacio generado por un vector normalizado (repaso). Sea $a \in \mathbb{R}^n$ con $||a||_2 = 1$. Escriba la fórmula para la matriz de proyección ortogonal sobre el subespacio generado por a:

$$P_a =$$

Calcule la transpuesta de la matriz P_a , el cuadrado de la matriz P_a y el vector P_aa :

$$P_a^{\top} = P_a a =$$
 $P_a a =$

2. Cálculo de la proyección ortogonal sobre el subespacio generado por un vector normalizado (repaso). Si $v \in \mathbb{R}^n$, entonces el producto $P_a v$ se puede escribir de varias maneras equivalentes; la forma más útil es

$$P_a v = (v).$$

- 3. Proyección ortogonal simultanea de varios vectores sobre el subespacio generado por un vector (repaso). Sea $a \in \mathbb{R}^n$ con $||a||_2 = 1$ y sea $V \in \mathcal{M}_{n \times m}(\mathbb{R})$. Usemos la siguientes notación:
 - v_1, \ldots, v_m son las columnas de V, esto es, $v_k = V_{*,k}$;
 - $\lambda_1, \ldots, \lambda_m$ son los productos internos de a con v_1, \ldots, v_m : $\lambda_k = \langle a, v_k \rangle = a^\top v_k$.
 - Λ es el renglón formado por $\lambda_1, \ldots, \lambda_m$: $\Lambda = [\lambda_1, \ldots, \lambda_m]$.

Exprese en estos términos el producto $a^{\top}V$:

Encuentre una fórmula para calcular la matriz formada por las columnas P_av_1, \ldots, P_av_m :

$$[P_a v_1, \dots, P_a v_m] = \underbrace{V}_{?}.$$

Programación: el algoritmo modificado de Gram-Schmidt, página 1 de 6

4. Función que calcula la proyección simultanea de varios vectores sobre el subespacio generado por un vector (repaso).

5. Propiedades de la proyección complementaria (repaso). Sea $a \in \mathbb{R}^n$, $||a||_2 = 1$. Definimos P_a como en los ejercicios anteriores. Consideremos la matriz

$$Q_a := I_n - P_a$$
.

Usando la propiedad $P_a^{\top} = P_a$ muestre que Q_a es simétrica:

$$Q_a^{\top} =$$

Usando la propiedad $P_a^2 = P_a$ calcule Q_a^2 :

$$Q_a^2 = = \underbrace{}_{2}$$

Calcule $Q_a a$:

$$Q_a a =$$

Muestre que si $v \in \mathbb{R}^n$ y $w = Q_a v$, entonces $a \perp w$:

$$\langle a, w \rangle = \langle a, Q_a v \rangle = a^{\mathsf{T}} Q_a v = a^{\mathsf{T}} Q_a^{\mathsf{T}} v = ($$
 $)^{\mathsf{T}} v =$

Muestre que si $v \in \mathbb{R}^n$ y $w = Q_a v$, entonces $w \in \ell(a, v)$ y $v \in \ell(a, w)$:

$$w =$$
 $\in \ell(a, v);$ $v =$ $\in \ell(a, w).$

Decimos que w es el complemento ortogonal de v respecto a.

6. Cálculo de la proyección ortogonal complementaria (repaso). En la siguiente función se supone que la matriz V tiene n renglones, donde n es la longitud del vector a. La función debe regresar la matriz $W = Q_a V$.

```
function [W] = orthcomplement(a, V),
   Lambda =
   W =
end
```

Algoritmo modificado de Gram-Schmidt para 4 vectores

7. Fórmulas matemáticas. Sean $a_1, a_2, a_3, a_4 \in \mathbb{R}^n$ algunos vectores linealmente independientes. Los guardamos en $b_1^{(0)}, b_2^{(0)}, b_3^{(0)}, b_4^{(0)}$.

En el paso 1 calculamos $b_1^{(1)}$ como $b_1^{(0)}$ normalizado, luego calculamos $b_2^{(1)}, b_3^{(1)}, b_4^{(1)}$ como los complementos ortogonales de $b_2^{(0)}, b_3^{(0)}, b_4^{(0)}$ respecto al vector $b_1^{(1)}$:

$$\begin{split} \nu_1 \coloneqq \|b_1^{(0)}\|_2, \\ b_1^{(1)} \coloneqq & /\nu_1, \end{split}$$

$$\lambda_{1,2} \coloneqq (b_1^{(1)})^\top \underbrace{\hspace{1cm}}_?, \qquad \lambda_{1,3} \coloneqq (b_1^{(1)})^\top \underbrace{\hspace{1cm}}_?, \qquad \lambda_{1,4} \coloneqq (b_1^{(1)})^\top \underbrace{\hspace{1cm}}_?, \\ b_2^{(1)} \coloneqq b_2^{(0)} - b_1^{(1)} \underbrace{\hspace{1cm}}_?, \qquad b_3^{(1)} \coloneqq b_3^{(0)} - b_1^{(1)} \underbrace{\hspace{1cm}}_?, \qquad b_4^{(1)} \coloneqq b_4^{(0)} - b_1^{(1)} \underbrace{\hspace{1cm}}_?. \end{split}$$

En el paso 2 calculamos $b_2^{(2)}$ como $b_2^{(1)}$ normalizado, luego calculamos $b_3^{(2)}, b_4^{(2)}$ como los complementos ortogonales de $b_3^{(1)}, b_4^{(1)}$ respecto al vector $b_2^{(2)}$:

$$b_2^{(2)} :=$$

$$\lambda_{2,3} :=$$

$$\lambda_{2,4} :=$$

$$b_3^{(2)} :=$$

$$b_4^{(2)} :=$$

En el paso 3 calculamos $b_3^{(3)}$ como $b_3^{(2)}$ normalizado, luego calculamos $b_4^{(3)}$ como el complemento ortogonal de $b_4^{(2)}$ respecto al vector $b_3^{(3)}$:

$$\nu_3 :=$$

$$b_3^{(3)} :=$$

$$\lambda_{3,4} :=$$

$$b_4^{(3)} :=$$

En el paso 4 calculamos $b_4^{(4)}$ como $b_4^{(3)}$ normalizado:

$$\nu_4 \coloneqq b_4^{(4)} \coloneqq$$

Programación: el algoritmo modificado de Gram–Schmidt, página 3 de 6

8. Fórmulas matemáticas más compactas. Sean $a_1, a_2, a_3, a_4 \in \mathbb{R}^n$ algunos vectores linealmente independientes. Los guardamos en $b_1^{(0)}, b_2^{(0)}, b_3^{(0)}, b_4^{(0)}$.

En el paso p=1 calculamos $b_1^{(1)}$ como $b_1^{(0)}$ normalizado, luego calculamos $b_2^{(1)}, b_3^{(1)}, b_4^{(1)}$ como los complementos ortogonales de $b_2^{(0)}, b_3(0), b_4^{(0)}$ respecto al vector $b_1^{(1)}$:

$$\begin{split} \nu_1 &\coloneqq \\ b_1^{(1)} &\coloneqq \\ \left[\lambda_{1,2}, \lambda_{1,3}, \lambda_{1,4}\right] &\coloneqq (b_1^{(1)})^\top \big[\qquad , \qquad , \qquad \big]; \\ \left[b_2^{(1)}, b_3^{(1)}, b_4^{(1)}\right] &\coloneqq \left[b_2^{(0)}, b_3^{(0)}, b_4^{(0)}\right] - b_1^{(1)} \left[\underbrace{\hspace{1cm}}_{2}, \underbrace{\hspace{1cm}}_{2}, \underbrace{\hspace{1cm}}_{2}, \underbrace{\hspace{1cm}}_{2}, \underbrace{\hspace{1cm}}_{2} \right]. \end{split}$$

En el paso p=2 calculamos $b_2^{(2)}$ como $b_2^{(1)}$ normalizado, luego calculamos $b_3^{(2)}, b_4^{(2)}$ como los complementos ortogonales de $b_3^{(1)}, b_4^{(1)}$ respecto al vector $b_2^{(2)}$:

$$\nu_2 := b_2^{(2)} := [\lambda_{2,3}, \lambda_{2,4}] := [b_3^{(2)}, b_4^{(2)}] :=$$

En el paso p=3 calculamos $b_3^{(3)}$ como $b_3^{(2)}$ normalizado, luego calculamos $b_4^{(3)}$ como el complemento ortogonal de $b_4^{(2)}$ respecto al vector $b_3^{(3)}$:

$$\nu_{3} := b_{3}^{(3)} := [\lambda_{3,4}] := [b_{4}^{(3)}] :=$$

En el paso p=4 calculamos $b_4^{(4)}$ como $b_4^{(3)}$ normalizado:

$$\nu_4 \coloneqq b_4^{(4)} \coloneqq$$

9. Programa para el caso de cuatro vectores. Dados cuatro vectores $a_1, a_2, a_3, a_4 \in \mathbb{R}^5$, construimos cuatro vectores ortonormales $b_1, b_2, b_3, b_4 \in \mathbb{R}^5$ aplicando el algoritmo de Gram-Schmidt modificado a los vectores dados a_1, a_2, a_3, a_4 . Al final comprobamos que los vectores b_1, b_2, b_3, b_4 son ortogonales a pares y calculamos su matriz de Gram. El siguiente código se puede guardar en un archivo MGSexample4.m.

```
function [] = MGSexample4(),
   a1 = [-2; 5; 1; -1; 4]; a2 = [-1; 6; 3; 4; 3];
   a3 = [-11; 20; 9; 7; 2]; a4 = [4; 2; 1; -2; 5];
   # Copy:
   b1 = a1; b2 = a2; b3 = a3; b4 = a4;
   # Step 1
   nu1 = norm(b1);
   b1 = b1 / nu1;
   la12 = b1' * b2
   la13 =
   la14 =
   b2 = b2 - la12 * b1
   b3 =
   b4 =
   # Step 2
   nu2 = norm(b2)
   b2 =
   1a23 = b2' * b3
   1a24 =
   b3 =
   b4 =
   # Step 3
   nu3 =
  b3 =
   1a34 =
   b4 =
   # Step 4
   nu4 =
   b4 =
   # Verify that the obtained vectores form an orthonormal list:
   B = [b1, b2, b3, b4]; G = B' * B
end
```

Programación: el algoritmo modificado de Gram-Schmidt, página 5 de 6

10. Código en forma matricial. Modificar el programa anterior de la siguiente manera: guardar los vectores en una matriz, guardar los coeficientes "lambdas" en un renglón.

```
function [] = MGSexample4matr(),
    a1 = [-2; 5; 1; -1; 4]; a2 = [-1; 6; 3; 4; 3];
    a3 = [-11; 20; 9; 7; 2]; a4 = [4; 2; 1; -2; 5];
# Copy:
    B = [a1, a2, a3, a4];

# Step 1
    nu1 = norm(B(:, 1));
    B(:, 1) = B(:, 1) / nu1;
    Lambdas1 = B(:, 1) * B(:, 2 : 4);
    B(:, 2 : 4) = B(:, 2 : 4) - B(:, 2 : 4) * Lambdas1;
    ...
end
```

11. Programar el algoritmo modificado de Gram-Schmidt en forma matricial.

```
function [B] = MGS(A),
    [n, m] = size(A);
    B = A;
    for p = 1 : ???,
        nu = ???;
        B(:, ???) = ???;
        Lambdas = ???;
        B(:, ???) = ??? - ??? * Lambdas;
    end
end

Prueba:

function [] = testMGS(),
    m = 4; n = 5; A = rand(n, m);
    B = MGS(A); display(B' * B);
end
```

12. Complejidad del algoritmo modificado de Gram-Schmidt. Contar el número de multiplicaciones y divisiones que se realizan en la función MGS, si la matriz A es de tamaño $n \times m$. Se puede suponer que la función norm, aplicada a un vector de longitud n, hace n multiplicaciones.