Solución del problema de mínimos cuadrados

Objetivos. Conocer el problema de mínimos cuadrados en el caso de rango completo, mostrar que este problema es equivalente al sistema de *ecuaciones normales* y se puede resolver por medio de una descomposición QR reducida.

Requisitos. Gradiente de una forma cuadrática, proyección ortogonal de un vector a un subespacio, descomposición QR reducida.

1. Problema de mínimos cuadrados. Sea $A \in \mathcal{M}_{n \times m}(\mathbb{R})$ tal que $r(A) = m \le n$ y sea $b \in \mathbb{R}^n$. Buscamos el punto mínimo de la función

$$f(x) = ||Ax - b||^2. (1)$$

Vamos a mostrar que la función f tiene un único punto mínimo global, que este punto es la solución del sistema de ecuaciones normales $A^{\top}Ax = A^{\top}b$ y que este punto satisface la ecuación $Rx = Q^{\top}b$, donde (Q, R) es una descomposición QR reducida de la matriz A.

Razonamiento analítico y algebraico

2. Lema sobre la matriz $A^{\top}A$. Sea $A \in \mathcal{M}_{n \times m}(\mathbb{R})$ tal que $r(A) = m \leq n$. Entonces $\ker(A) = \{\mathbf{0}_m\}$, y la matriz $A^{\top}A$ es invertible y positiva definida. Lo último significa que

$$\forall x \in \mathbb{R}^m \setminus \{\mathbf{0}_m\} \qquad x^{\top}(A^{\top}A)x > 0.$$

Demostración. I. La condición r(A) = m significa que las columnas de A son linealmente independientes. El producto Ax se puede escribir como una combinación lineal de las columnas de A:

$$Ax = \sum_{k=1}^{m} A_{*,k} x_k,$$

y esta combinación es cero solamente cuando todos los números x_1, \ldots, x_m son cero. Otro camino para demostrar este parte es aplicar el teorema sobre el rango y la nulidad:

$$\dim(\ker(A)) = m - \dim(\operatorname{im}(A)) = m - \operatorname{r}(A) = m - m = 0.$$

II. Sea $x \in \mathbb{R}^m$. Entonces

$$x^{\top} A^{\top} A x = (Ax)^{\top} (Ax) = ||Ax||^2 \ge 0.$$
 (2)

Además, esta expresión se anula solamente cuando $x \in \ker(A)$, y por la parte I esto pasa solamente cuando $x = \mathbf{0}_m$.

III. Supongamos que $x \in \ker(A^{\top}A)$, esto es, $A^{\top}Ax = \mathbf{0}_m$. Entonces la expresión (2) es cero, $Ax = \mathbf{0}_n$ y $x = \mathbf{0}_m$. Hemos demostrado que $\ker(A^{\top}A) = \{\mathbf{0}_m\}$. Como la matriz $A^{\top}A$ es cuadrada, esto implica que $A^{\top}A$ es invertible.

Solución del problema de mínimos cuadrados, página 1 de 4

3. Lema sobre el gradiente de la función asociada al problema de mínimos cuadrados. El gradiente de la función (1) es

$$(\nabla f)(x) = 2A^{\top}Ax - 2A^{\top}b.$$

Demostración. Primero escribimos f(x) en la siguiente forma expandida:

$$f(x) = (Ax - b)^{\top} (Ax - b) = x^{\top} (A^{\top} A) x - x^{\top} A^{\top} b - b^{\top} A x + b^{\top} b$$

= $x^{\top} (A^{\top} A) x - 2 (A^{\top} b)^{\top} x + ||b||^{2}.$

Por las fórmulas que hemos deducido antes el gradiente es $2A^{T}Ax - 2A^{T}b$.

- 4. Razonamiento con la matriz hessiana (no se incluye en el examen). El Lema 3 muestra que los puntos críticos de la función f deben ser soluciones del sistema de ecuaciones normales $A^{\top}Ax = A^{\top}b$. Ya hemos mostrado que la matriz $A^{\top}A$ es invertible, luego este sistema tiene una única solución. Es fácil ver que la matriz hessiana de la función f es $2A^{\top}A$, y ya sabemos que esta matriz es positiva definida. Luego, con un poco más de preparación analítica podríamos concluir que la función f es estrictamente convexa y que su punto crítico es su punto mínimo global estricto. No vamos a suponer que estos temas están bien estudiados y busquemos un razonamiento más elemental.
- 5. Teorema sobre el problema de mínimos cuadrados y el sistema de ecuaciones normales. Sea $A \in \mathcal{M}_{n \times m}(\mathbb{R})$ tal que $r(A) = m \le n$ y sea $b \in \mathbb{R}^n$. Entonces el sistema de ecuaciones $A^{\top}Ax = A^{\top}b$ tiene una única solución, la cual es el punto mínimo global estricto de la función $f(x) = ||Ax b||^2$.

Demostración. Ya hemos demostrado que la matriz $A^{\top}A$ es invertible, luego el sistema de ecuaciones $A^{\top}Ax = A^{\top}b$ tiene una única solución la cual denotemos por u. En otras palabras, pongamos $u = (A^{\top}A)^{-1}A^{\top}b$. Es importante que se satisface la igualdad

$$A^{\top} A u = A^{\top} b. \tag{3}$$

Sea x un vector arbitrario en \mathbb{R}^m . Pongamos h=x-u y demostremos que

$$f(x) - f(u) = h^{\mathsf{T}}(A^{\mathsf{T}}A)h. \tag{4}$$

En efecto,

$$f(x) - f(u) = (A(u+h) - b)^{\top} (A(u+h) - b) - (Au - b)^{\top} (Au - b)$$
$$= (Au - b + Ah)^{\top} (Au - b + Ah) - (Au - b)^{\top} (Au - b)$$
$$= 2h^{\top} A^{\top} (Au - b) + ||Ah||^{2}.$$

El primer sumando es cero por (3), y la fórmula (4) está demostrada. Como la matriz $A^{\top}A$ es positiva definida, para cualquier vector x en $\mathbb{R}^m \setminus \{u\}$ tendremos $h = x - u \neq \mathbf{0}_m$ y f(x) > f(u). Hemos demostrado que u es el punto mínimo global estricto de la función f. Por supuesto, el punto mínimo global estricto, cuando existe, es único.

Solución del problema de mínimos cuadrados, página 2 de 4

6. Solución del sistema de ecuaciones normales por medio de una factorización QR reducida. Supongamos que A y b son como antes, y que (Q, R) es una factorización QR reducida de la matriz A, esto es, A = QR, $Q^{T}Q = I_{m}$ y R es una matriz triangular superior. La hipótesis que r(A) = m implica que R es invertible, luego R^{T} también es invertible. Simplifiquemos el sistema de ecuaciones $A^{T}Ax = A^{T}b$:

$$R^{\mathsf{T}}Q^{\mathsf{T}}QRx = R^{\mathsf{T}}Q^{\mathsf{T}}b \iff Rx = Q^{\mathsf{T}}b.$$

El último sistema es fácil de resolver porque R es triangular superior.

Razonamiento más geométrico

7. Proyección ortogonal sobre un subespacio generado por una lista ortonormal (repaso). Sea S un subespacio de \mathbb{R}^n . Para cualquier vector v en \mathbb{R}^n existe un único par de vectores $(u, w) \in S \times S^{\perp}$ tal que v = u + w. El vector u se llama la proyección ortogonal del vector v sobre el subespacio S y se denota por $P_S v$. Si q_1, \ldots, q_m es una base ortonormal de S, entonces

$$P_S v = \sum_{k=1}^m (q_k^\top v) q_k.$$

En forma matricial, si denotamos por Q a la matriz formada por las columnas q_1, \ldots, q_m , entonces

$$P_S = QQ^{\top}$$
.

El vector u es el más cercano al vector v entre todos los elementos de S. Formalmente, si $y \in S \setminus \{u\}$, entonces ||y - v|| > ||u - v||.

8. Teorema sobre la solución del problema de mínimos cuadrados, demostración por medio de una proyección ortogonal. Sea $A \in \mathcal{M}_{n \times m}(\mathbb{R})$ tal que $r(A) = m \leq n$ y sea $b \in \mathbb{R}^n$. Entonces la función $f \colon \mathbb{R}^n \to \mathbb{R}$ definida mediante $f(x) := \|Ax - b\|^2$ tiene un único punto mínimo global estricto, y este punto se puede calcular como $R^{-1}Q^{\top}b$, donde (Q, R) es una descomposición QR reducida de la matriz A.

Demostración. Pongamos $S = \operatorname{im}(A) = \ell(a_1, \ldots, a_m)$, donde a_1, \ldots, a_m son las columnas de A. Sea (Q, R) una descomposición QR reducida de la matriz A, y sean q_1, \ldots, q_m las columnas de Q. Entonces $S = \operatorname{im}(Q) = \ell(q_1, \ldots, q_m)$. Denotemos por u al elemento de S más cercano a b:

$$u = P_S b = Q Q^{\top} b.$$

Se puede verificar directamente que u está en la imagen de A:

$$u = QRR^{-1}Q^{\top}b = A(R^{-1}Q^{\top}b).$$

Más aún, como las columnas de A son linealmente independientes, u es la imagen bajo A de un único vector que denotemos por s:

$$s = R^{-1}Q^{\top}b.$$

Ahora es obvio que s es el mínimo global estricto de la función f. Lo verifiquemos de manera directa. Si $x \in \mathbb{R}^m \setminus \{s\}$, entonces $Ax \neq As$, esto es, $Ax \neq u$, luego

$$f(x) = ||Ax - b||^2 > ||u - b||^2 = ||As - b||^2 = f(s).$$