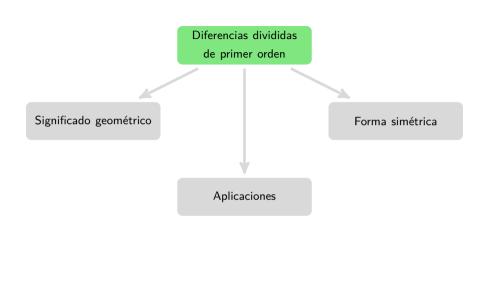
Diferencias divididas de primer orden

Egor Maximenko http://www.egormaximenko.com

Instituto Politécnico Nacional, ESFM, México

1 de septiembre de 2016



Sean

X un subconjunto de \mathbb{R} ,

 $f: X \to \mathbb{R}$ una función,

 $x_1, x_2 \in X$ tales que $x_1 \neq x_2$.

Sean

X un subconjunto de \mathbb{R} ,

 $f: X \to \mathbb{R}$ una función,

 $x_1, x_2 \in X$ tales que $x_1 \neq x_2$.

$$f[x_1,x_2]:=\frac{f(x_2)-f(x_1)}{x_2-x_1}.$$

Sean

X un subconjunto de \mathbb{R} ,

 $f: X \to \mathbb{R}$ una función,

 $x_1, x_2 \in X$ tales que $x_1 \neq x_2$.

$$f[x_1,x_2] := \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

incremento de la función incremento del argumento

Sean

X un subconjunto de \mathbb{R} ,

 $f: X \to \mathbb{R}$ una función,

 $x_1, x_2 \in X$ tales que $x_1 \neq x_2$.

$$f[x_1,x_2] := \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

incremento de la función incremento del argumento

Otra notación:

$$\Delta_f(x_1, x_2), \qquad D(f, x_1, x_2), \qquad [x_1, x_2]f, \qquad [x_1, x_2; f], \qquad D[x_1, x_2]f, \qquad \dots$$

$$\exp[0.4, 0.7] = \frac{\exp(0.7) - \exp(0.4)}{0.7 - 0.4}$$

$$\exp[0.4, 0.7] = \frac{\exp(0.7) - \exp(0.4)}{0.7 - 0.4} \approx \frac{2.01375 - 1.49182}{0.3} \approx 1.7398.$$

$$\exp[0.4, 0.7] = \frac{\exp(0.7) - \exp(0.4)}{0.7 - 0.4} \approx \frac{2.01375 - 1.49182}{0.3} \approx 1.7398.$$

Eiemplo 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := x^3$, $a, b \in \mathbb{R}$, $a \neq b$.

$$f[a,b] = \frac{b^3 - a^3}{b-a}$$

$$\exp[0.4, 0.7] = \frac{\exp(0.7) - \exp(0.4)}{0.7 - 0.4} \approx \frac{2.01375 - 1.49182}{0.3} \approx 1.7398.$$

Ejemplo 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := x^3$, $a, b \in \mathbb{R}$, $a \neq b$.

 $f[a,b] = \frac{b^3 - a^3}{b^3} = \frac{a^3 - b^3}{a^3 + b^3}$

2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := x^3$, $a, b \in \mathbb{R}$, $a \neq b$

$$\exp[0.4, 0.7] = \frac{\exp(0.7) - \exp(0.4)}{0.7 - 0.4} \approx \frac{2.01375 - 1.49182}{0.3} \approx 1.7398.$$

Ejemplo 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := x^3$, $a, b \in \mathbb{R}$, $a \neq b$.

$$f[a,b] = \frac{b^3 - a^3}{b^2} = \frac{a^3 - b^3}{a^2} = \frac{(a-b)(a^2 + ab + b^2)}{a^2}$$

$$\exp[0.4, 0.7] = \frac{\exp(0.7) - \exp(0.4)}{0.7 - 0.4} \approx \frac{2.01375 - 1.49182}{0.3} \approx 1.7398.$$

 $f[a,b] = \frac{b^3 - a^3}{b^3} = \frac{a^3 - b^3}{a^3 - b^3} = \frac{(a-b)(a^2 + ab + b^2)}{a^3 - b^3} = a^2 + ab + b^2$

Ejemplo 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := x^3$, $a, b \in \mathbb{R}$, $a \neq b$.

jemplo 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) \coloneqq x^3$, $a, b \in \mathbb{R}$, $a \neq b$

emplo 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := x^3$, $a, b \in \mathbb{R}$, $a \neq b$

$$\exp[0.4, 0.7] = \frac{\exp(0.7) - \exp(0.4)}{0.7 - 0.4} \approx \frac{2.01375 - 1.49182}{0.3} \approx 1.7398.$$

Ejemplo 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) := x^3$, $a, b \in \mathbb{R}$, $a \neq b$.

emplo 2.
$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) := x^{\circ}, \quad a, b \in \mathbb{R}, \quad a \neq b$$

 $f[a,b] = \frac{b^3 - a^3}{b^2} = \frac{a^3 - b^3}{a^2 - b} = \frac{(a-b)(a^2 + ab + b^2)}{a^2 - b} = a^2 + ab + b^2 = \sum_{k=0}^{\infty} a^{2-k}b^k.$

$$\sin[0,x] = \frac{\sin(x) - \sin(0)}{x - 0}$$

$$\sin[0,x] = \frac{\sin(x) - \sin(0)}{x - 0} = \frac{\sin(x)}{x}$$

$$\sin[0,x] = \frac{\sin(x) - \sin(0)}{x - 0} = \frac{\sin(x)}{x} = \operatorname{sinc}(x).$$
 la función seno cardinal

$$sin[0,x] = \frac{sin(x) - sin(0)}{x - 0} = \frac{sin(x)}{x} = sinc(x).$$
 la función seno cardinal

Ejemplo 4. Sean
$$a, b \in \mathbb{R}$$
, $a \neq b$.

$$\cos[a,b] = \frac{\cos(b) - \cos(a)}{b - a}$$

$$\sin[0,x] = \frac{\sin(x) - \sin(0)}{x - 0} = \frac{\sin(x)}{x} = \operatorname{sinc}(x).$$
 la función seno cardinal

Ejemplo 4. Sean
$$a, b \in \mathbb{R}$$
, $a \neq b$.

$$\cos[a, b] = \frac{\cos(b) - \cos(a)}{b - a} = \frac{2\sin\frac{a - b}{2}\sin\frac{a + b}{2}}{b - a}$$

$$sin[0,x] = \frac{sin(x) - sin(0)}{x - 0} = \frac{sin(x)}{x} = sinc(x).$$
 la función seno cardinal

Ejemplo 4. Sean
$$a, b \in \mathbb{R}$$
, $a \neq b$.

$$\cos[a, b] = \frac{\cos(b) - \cos(a)}{b - a} = \frac{2\sin\frac{a - b}{2}\sin\frac{a + b}{2}}{b - a}$$
$$= -\frac{\sin\frac{a - b}{2}}{\frac{a - b}{2}}\sin\frac{a + b}{2}$$

$$sin[0,x] = \frac{sin(x) - sin(0)}{x - 0} = \frac{sin(x)}{x} = sinc(x).$$
 la función seno cardinal

Ejemplo 4. Sean $a, b \in \mathbb{R}$, $a \neq b$.

$$\cos[a, b] = \frac{\cos(b) - \cos(a)}{b - a} = \frac{2\sin\frac{a - b}{2}\sin\frac{a + b}{2}}{b - a}$$
$$= -\frac{\sin\frac{a - b}{2}}{a - b}\sin\frac{a + b}{2} = -\operatorname{sinc}\frac{a - b}{2}\sin\frac{a + b}{2}.$$

Ejercicio 1.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$, $a, b \in \mathbb{R}$, $a \neq b$. $f[a, b] =$

Ejercicio 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^4$, $a, b \in \mathbb{R}$, $a \neq b$.

$$f[a,b] =$$

Ejercicio 3.
$$a, b \in \mathbb{R}, a \neq b$$
.

$$sin[a, b] =$$

Ejercicio 4.
$$f:[0,+\infty)\to\mathbb{R}$$
, $f(x)=\sqrt{x}$, $a,b\geq 0$, $a\neq b$.

$$f[a,b] =$$

Ejercicio 1.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$, $a, b \in \mathbb{R}$, $a \neq b$.

$$f[a,b] =$$

Ejercicio 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^4$, $a, b \in \mathbb{R}$, $a \neq b$.

$$f[a,b] =$$

Ejercicio 3.
$$a, b \in \mathbb{R}$$
, $a \neq b$.

$$sin[a, b] =$$

Ejercicio 4.
$$f: [0, +\infty) \to \mathbb{R}$$
, $f(x) = \sqrt{x}$, $a, b \ge 0$, $a \ne b$.

$$f[a, b] =$$

Ejercicio 1.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$, $a, b \in \mathbb{R}$, $a \neq b$.

$$f[a,b]=a+b.$$

 $\sin[a, b] = \operatorname{sinc} \frac{a-b}{2} \cos \frac{a+b}{2}$.

 $f[a,b] = \frac{1}{\sqrt{a} + \sqrt{b}}.$

Ejercicio 2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^4$, $a, b \in \mathbb{R}$, $a \neq b$.

$$f[a,b] = a^{3} + a^{2}b + ab^{2} + b^{3} = \sum_{k=0}^{3} a^{3-k}b^{k}.$$

$$a \neq b$$

Ejercicio 4. $f:[0,+\infty)\to\mathbb{R}$, $f(x)=\sqrt{x}$, a,b>0, $a\neq b$.

Ejercicio 3.
$$a, b \in \mathbb{R}$$
, $a \neq b$.

$$\neq b$$

$$+a^2b$$

Ejercicio 5.
$$f(x) = x^n$$
.

$$f[a,b] =$$

$$\mathsf{tg}[\mathsf{a},\mathsf{b}] =$$

Ejercicio 7.
$$f(x) = \sqrt[3]{x}$$
.

$$f[a,b] =$$

Programar la función dd1 en algún lenguaje de programación.

Entrada: f, a, b.

Salida: el valor de la diferencia dividida f[a, b].

Programar la función dd1 en algún lenguaje de programación.

Entrada: f, a, b.

Salida: el valor de la diferencia dividida f[a, b].

Realización en el lenguaje GNU Octave (similar a MATLAB)

```
Archivo dd1.m:
```

```
function result = dd1(f, a, b),
  result = (f(b) - f(a)) / (b - a);
endfunction
```

Programar la función dd1 en algún lenguaje de programación.

Entrada: f, a, b.

Salida: el valor de la diferencia dividida f[a, b].

Realización en el lenguaje GNU Octave (similar a MATLAB)

Pruebas (en el intérprete de GNU Octave):

Archivo dd1.m:

> dd1(@exp, 0.4, 0.7)

```
function result = dd1(f, a, b),
  result = (f(b) - f(a)) / (b - a);
endfunction
```

Programar la función dd1 en algún lenguaje de programación.

Entrada: f, a, b.

Salida: el valor de la diferencia dividida f[a, b].

Realización en el lenguaje GNU Octave (similar a MATLAB)

Realización en el lenguaje GNO Octave (Similar a MATEAD)

Archivo dd1.m:

function result = dd1(f, a, b),
 result = (f(b) - f(a)) / (b - a);
endfunction

Pruebas (en el intérprete de GNU Octave):

> dd1(@exp, 0.4, 0.7) ans = 1.7398

Programar la función dd1 en algún lenguaje de programación.

Entrada: f. a. b.

Salida: el valor de la diferencia dividida f[a, b].

Realización en el lenguaje GNU Octave (similar a MATLAB)

Pruebas (en el intérprete de GNU Octave):

Archivo dd1.m:

function result = dd1(f, a, b), result = (f(b) - f(a)) / (b - a); > h = Q(x) cos(x) + x:

endfunction

> dd1(@exp, 0.4, 0.7)ans = 1.7398

Programar la función dd1 en algún lenguaje de programación.

Entrada: f. a. b.

Salida: el valor de la diferencia dividida f[a, b].

Realización en el lenguaje GNU Octave (similar a MATLAB)

```
Archivo dd1.m:
```

```
function result = dd1(f, a, b),
  result = (f(b) - f(a)) / (b - a):
```

endfunction

Pruebas (en el intérprete de GNU Octave):

> dd1(@exp, 0.4, 0.7)ans = 1.7398

> h = Q(x) cos(x) + x;

> dd1(h, 2, 3)

Programar la función dd1 en algún lenguaje de programación.

Entrada: f. a. b.

Salida: el valor de la diferencia dividida f[a, b].

Realización en el lenguaje GNU Octave (similar a MATLAB)

```
Archivo dd1.m:
```

```
function result = dd1(f, a, b),
  result = (f(b) - f(a)) / (b - a):
```

endfunction

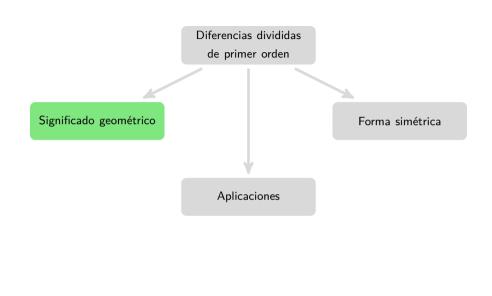
Pruebas (en el intérprete de GNU Octave):

```
> dd1(@exp, 0.4, 0.7)
       ans = 1.7398
> h = Q(x) cos(x) + x;
```

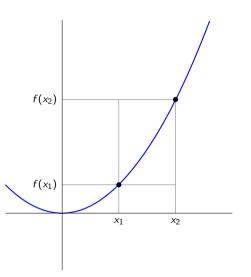
$$\cdot h = \emptyset(x) \cos(x) + x;$$

$$> dd1(h, 2, 3)$$

ans = 0.42615



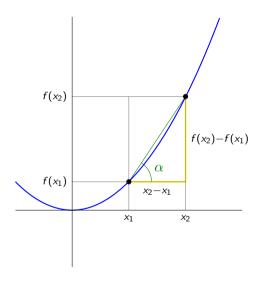
Significado geométrico: la pendiente de la secante



$$f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
$$= \frac{1 - 0.25}{1 - 0.5} = \frac{0.75}{0.5} = 1.5.$$

 $f(x) = x^2$, $x_1 = 0.5$, $x_2 = 1$.

Significado geométrico: la pendiente de la secante



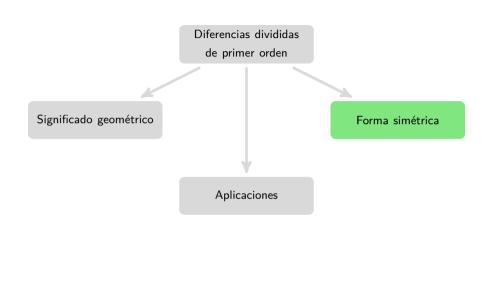
$$f(x) = x^2$$
, $x_1 = 0.5$, $x_2 = 1$,
 $f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$
 $= \frac{1 - 0.25}{1 - 0.5} = \frac{0.75}{0.5} = 1.5$.

La pendiente de la secante es la tangente del ángulo α :

$$tg \alpha = f[x_1, x_2].$$

Ecuación de la secante:

$$y - f(x_1) = f[x_1, x_2](x - x_1).$$



Propiedad simétrica

$$f[x_2, x_1] = f[x_1, x_2].$$

Demostración.

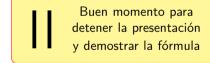
$$f[x_2, x_1] = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f[x_1, x_2].$$

Forma expandida (simétrica)

$$f[x_1,x_2] = \frac{f(x_1)}{x_1-x_2} + \frac{f(x_2)}{x_2-x_1}.$$

Forma expandida (simétrica)

$$f[x_1, x_2] = \frac{f(x_1)}{x_1 - x_2} + \frac{f(x_2)}{x_2 - x_1}.$$

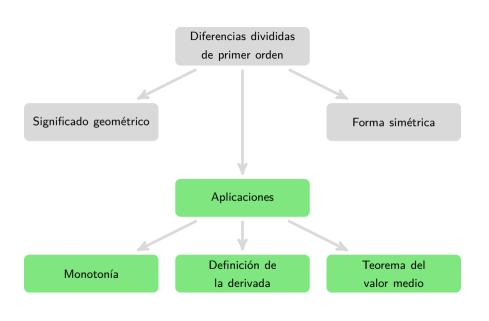


Forma expandida (simétrica)

$$f[x_1, x_2] = \frac{f(x_1)}{x_1 - x_2} + \frac{f(x_2)}{x_2 - x_1}.$$

Demostración.

$$f[x_1,x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_2)}{x_2 - x_1} - \frac{f(x_1)}{x_2 - x_1} = \frac{f(x_2)}{x_2 - x_1} + \frac{f(x_1)}{x_1 - x_2}.$$



en términos de las diferencias divididas de primer orden

Sean X un subconjunto de \mathbb{R} , $f: X \to \mathbb{R}$ una función.

Se dice que f es creciente en X (en el sentido no estricto) si

en términos de las diferencias divididas de primer orden

Sean X un subconjunto de \mathbb{R} , $f: X \to \mathbb{R}$ una función.

Se dice que f es creciente en X (en el sentido no estricto) si

$$\forall x_1, x_2 \in X$$
 $\left(x_1 < x_2 \implies f(x_1) \le f(x_2)\right).$

en términos de las diferencias divididas de primer orden

Sean X un subconjunto de \mathbb{R} , $f: X \to \mathbb{R}$ una función.

Se dice que f es creciente en X (en el sentido no estricto) si

$$\forall x_1, x_2 \in X$$
 $\left(x_1 < x_2 \implies f(x_1) \leq f(x_2)\right).$

Criterio de función creciente en términos de las diferencias divididas de primer orden:

$$f$$
 es creciente en $X \iff$

en términos de las diferencias divididas de primer orden

Sean X un subconjunto de \mathbb{R} , $f: X \to \mathbb{R}$ una función.

Se dice que f es creciente en X (en el sentido no estricto) si

$$\forall x_1, x_2 \in X$$
 $\left(x_1 < x_2 \implies f(x_1) \le f(x_2)\right).$

Criterio de función creciente en términos de las diferencias divididas de primer orden:

$$f$$
 es creciente en $X \qquad \Longleftrightarrow \qquad$

en términos de las diferencias divididas de primer orden

Sean X un subconjunto de \mathbb{R} , $f: X \to \mathbb{R}$ una función.

Se dice que f es creciente en X (en el sentido no estricto) si

$$\forall x_1, x_2 \in X$$
 $\left(x_1 < x_2 \implies f(x_1) \leq f(x_2)\right).$

Criterio de función creciente en términos de las diferencias divididas de primer orden:

$$f$$
 es creciente en X \iff $\forall x_1, x_2 \in X$ $\Big(x_1 \neq x_2 \implies f[x_1, x_2] \geq 0\Big).$

en términos de las diferencias divididas de primer orden

Sean X un subconjunto de \mathbb{R} , $f: X \to \mathbb{R}$ una función.

Se dice que f es creciente en X (en el sentido no estricto) si

$$\forall x_1, x_2 \in X$$
 $\left(x_1 < x_2 \implies f(x_1) \leq f(x_2)\right).$

Criterio de función creciente en términos de las diferencias divididas de primer orden:

$$f$$
 es creciente en X \iff $\forall x_1, x_2 \in X$ $\Big(x_1 \neq x_2 \implies f[x_1, x_2] \geq 0\Big).$

Idea de demostración:

- Para $x_1 < x_2$, la condición $f(x_1) \le f(x_2)$ es equivalente a $f[x_1, x_2] \ge 0$.
- Para $x_1 > x_2$, usar la simetría: $f[x_1, x_2] = f[x_2, x_1]$.

en términos de las diferencias divididas de primer orden

Sean X un intervalo de \mathbb{R} , $f: X \to \mathbb{R}$ una función, $a \in X$.

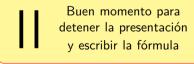
Entonces la derivada de f en el punto a se define como el siguiente límite:

en términos de las diferencias divididas de primer orden

Sean X un intervalo de \mathbb{R} , $f: X \to \mathbb{R}$ una función, $a \in X$.

Entonces la $\frac{derivada}{de}$ de $\frac{f}{de}$ en el punto $\frac{d}{de}$ se define como el siguiente límite:

$$f'(a) =$$



en términos de las diferencias divididas de primer orden

Sean X un intervalo de \mathbb{R} , $f: X \to \mathbb{R}$ una función, $a \in X$.

Entonces la derivada de f en el punto a se define como el siguiente límite:

$$f'(a) = \lim_{\substack{x \to a \\ x \neq a}} f[a, x].$$

en términos de las diferencias divididas de primer orden

Sean X un intervalo de \mathbb{R} , $f: X \to \mathbb{R}$ una función, $a \in X$.

Entonces la derivada de f en el punto a se define como el siguiente límite:

$$f'(a) = \lim_{\substack{x \to a \\ x \neq a}} f[a, x].$$

Ejercicio. Recordar el sentido geométrico.

¿Qué pasa con las pendientes de las secantes cuando x se acerca al punto a?

en términos de las diferencias divididas de primer orden

Sean a < b y sea $f: [a, b] \to \mathbb{R}$ tal que

- f es continua en [a, b],
- f es derivable en (a, b).

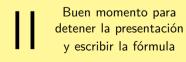
Entonces existe $c \in (a, b)$ tal que

en términos de las diferencias divididas de primer orden

Sean a < b y sea $f: [a, b] \to \mathbb{R}$ tal que

- f es continua en [a, b],
- f es derivable en (a, b).

Entonces existe $c \in (a, b)$ tal que



en términos de las diferencias divididas de primer orden

Sean a < b y sea $f: [a, b] \to \mathbb{R}$ tal que

- f es continua en [a, b],
- f es derivable en (a, b).

Entonces existe $c \in (a, b)$ tal que

$$f[a,b]=f'(c).$$

en términos de las diferencias divididas de primer orden

Sean a < b y sea $f: [a, b] \to \mathbb{R}$ tal que

- f es continua en [a, b],
- f es derivable en (a, b).

Entonces existe $c \in (a, b)$ tal que

$$f[a,b]=f'(c).$$

Ejercicio. Recordar el sentido geométrico.

Tareas creativas: diferencias divididas de segundo orden

$$f[x_1, x_2, x_3] := \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}.$$

• Escribir $f[x_1, x_2, x_3]$ en una forma expandida simétrica:

$$f[x_1, x_2, x_3] = \frac{f(x_1)}{?} + \frac{f(x_2)}{?} + \frac{f(x_3)}{?}.$$

• Suponiendo que f es dos veces derivable en un punto a, calcular el límite

$$\lim_{\substack{x_1, x_2, x_3 \to a, \\ x_1 < x_2 < x_3}} f[x_1, x_2, x_3].$$

• Suponiendo que f es bastante suave y $x_1 < x_2 < x_3$, expresar $f[x_1, x_2, x_3]$ a través de f''(c), donde $c \in (x_1, x_3)$.