Teorema de estabilidad de la solución del problema de Cauchy

Objetivos. Demostrar el teorema sobre la estabilidad de la solución del problema de Cauchy, para el caso de una franja.

1. Teorema (estabilidad respecto al valor inicial). Sean A un intervalo finito en \mathbb{R} , f: $A \times \mathbb{R} \to \mathbb{R}$ una función continua y acotada, tal que existe un K > 0 con

$$|f(t, v_1) - f(t, v_2)| \le K|v_1 - v_2|$$
 $(t \in A, v_1, v_2 \in \mathbb{R}).$

Sean $t_0 \in A$ y $x_0 \in \mathbb{R}$. Denotemos por $x: A \to \mathbb{R}$ a la solución del problema

$$x'(t) = f(t, x(t)), \qquad x(t_0) = x_0,$$

y sea $y: A \to \mathbb{R}$ una función derivable tal que

$$y'(t) = f(t, y(t)).$$

Entonces para cada t en A

$$|y(t) - x(t)| \le |y(t_0) - x(t_0)|e^{K|t - t_0|}. \tag{1}$$

Demostración. Pasamos del problema de Cauchy a la ecuación integral:

$$x(t) = x(t_0) + \int_{t_0}^t f(s, x(s)) ds, \qquad y(t) = y(t_0) + \int_{t_0}^t f(s, y(s)) ds.$$

Denotemos la función |y-x| por $\mathfrak u$ y el número $|y(t_0)-x(t_0)|$ por $\mathfrak c.$ Entonces

$$u(t) \le c + \left| \int_{t_0}^t (f(s, y(s)) - f(s, x(s))) \, ds \right| \le c + \int_{\text{conv}\{t_0, t\}} |f(s, y(s)) - f(s, x(s))| \, ds.$$

Aplicamos la condición de Lipschitz:

$$u(t) \leq c + \int\limits_{\operatorname{conv}\{t_0,t\}} K\,u(s)\,ds.$$

Aplicamos la desigualdad de Grönwall:

$$u(t) \le c \exp\left(\int\limits_{\operatorname{conv}\{t_0,t\}} K \, ds\right) = c \operatorname{e}^{K|t-t_0|}.$$

Hemos obtenido (1).

2. Corolario: unicidad de solución. Del teorema demostrado se sigue la unicidad de solución: si existe una solución, entonces es única. En efecto, si $x(t_0) = y(t_0)$, entonces por (1) para cada t en A tenemos $|y(t) - x(t)| \le 0$.

Estabilidad de la solución del problema de Cauchy, página 1 de 1