Análisis del método de diferencias finitas implícito para resolver la ecuación de calor en un intervalo

1. Idea del método implicito.

$$\frac{u(x_j,t_k)-u(x_j,t_{k-1})}{\tau}+O(\tau)=\frac{u(x_{j-1},t_k)-2u(x_j,t_k)+u(x_{j+1},t_k)}{h^2}+O(h^2).$$

Multiplicamos ambos lados por τ y denotamos $\frac{\tau}{h^2}$ por r. Pasamos los términos con t_k al lado izquierdo, y el término con t_{k-1} al lado derecho:

$$-ru(x_{j-1},t_k) + (1+2r)u(x_j,t_k) - ru(x_{j+1},t_k) = u(x_j,t_{k-1}) + O(\tau^2 + \tau h^2).$$
 (1)

Buscamos una solución aproximada que satisfaga las siguientes ecuaciones:

$$-rU_{i-1}^{(k)} + (1+2r)U_{i}^{(k)} - rU_{i+1}^{(k)} = U_{i}^{(k-1)}.$$
 (2)

Denotemos por $A_{n,r}$ a la matriz cuadrada de orden n-1 tridiagonal de Toeplitz con entradas -r, 1+2r, -r. Por ejemplo,

$$A_{7,r} = \left[\begin{array}{ccccccc} 1+2r & -r & 0 & 0 & 0 & 0 \\ -r & 1+2r & -r & 0 & 0 & 0 \\ 0 & -r & 1+2r & -r & 0 & 0 \\ 0 & 0 & -r & 1+2r & -r & 0 \\ 0 & 0 & 0 & -r & 1+2r & -r \\ 0 & 0 & 0 & 0 & -r & 1+2r \end{array} \right].$$

Entonces las ecuaciones (2) con las condiciones de frontera se pueden escribir en la siguiente forma matricial:

$$A_{n,r}U^{(k)} = U^{(k-1)}. (3)$$

En cada paso $U^{(k)}$ se obtiene de $U^{(k-1)}$ al resolver un sistema de ecuaciones lineales con la matriz $A_{n,r}$. Formalmente,

$$U^{(k)} = A_{n,r}^{-1} U^{(k-1)}$$
.

2. Error local de truncamiento y la convergencia. Denotemos τ/h^2 por r. Sea u la solución exacta de la ecuación de calor. Entonces u satisface (1). Por otro lado, la solución del problema discretizado satisface (2). Denotamos $u(x_j,t_k)-U_{j,k}$ por $Z_j^{(k)}$ y restamos (2) de (1):

$$-rZ_{j-1}^{(k)}+(1+2r)Z_{j}^{(k)}-rZ_{j+1}^{(k)}=Z_{j}^{(k-1)}+O(\tau^{2}+\tau h^{2}). \tag{4} \label{eq:4}$$

Pasemos los términos con $-\mathbf{r}$ al lado derecho:

$$(1+2r)Z_{i}^{(k)}=rZ_{i-1}^{(k)}+rZ_{i+1}^{(k)}+Z_{i}^{(k-1)}+O(\tau^{2}+\tau h^{2}).$$

Acotemos la norma-máximo:

$$(1+2r)\|Z^{(k)}\|_{\infty} \le 2r\|Z^{(k)}\|_{\infty} + \|Z^{(k-1)}\|_{\infty} + C(\tau^2 + \tau h^2).$$

Despejamos $\|Z^{(k)}\|_{\infty}$:

$$\|Z^{(k)}\|_{\infty} \leq \|Z^{(k-1)}\|_{\infty} + C(\tau^2 + \tau h^2).$$

Como $Z^{(0)}$ es el vector cero, obtenemos

$$\|Z^{(k)}\|_{\infty} \leq kC(\tau^2 + \tau h^2).$$

El máximo valor de k es m, y $m\tau = t_{max}$. Luego para cada k

$$\|Z^{(k)}\|_{\infty} \leq Ct_{\max}(\tau+h^2).$$

Resumen: el método implícito converge para cualquier r, y el orden de la convergencia es $O(\tau + h^2)$.