Operadores lineales positivos

Objetivos. Conocer definiciones equivalentes de operadores lineales positivos.

Requisitos. Transformación autoadjunta.

1. Definición (operador lineal positivo). Sea V un espacio vectorial complejo o real con producto interno. Un operador lineal $T \in \mathcal{L}(V)$ se llama positivo si $T^* = T$ y

$$\langle Tv, v \rangle \ge 0 \qquad \forall v \in V.$$

- 2. Proposición (criterio de operador lineal positivo). Sea $T \in \mathcal{L}(V)$. Entonces las siguientes condiciones son equivalentes:
 - (a) T es positivo.
 - (b) T es autoadjunto y sp $(T) \subset [0, +\infty)$.
 - (c) Existe un operador lineal $S \in \mathcal{L}(V)$ tal que $T = S^*S$.
- 3. Corolario (criterio de matriz lineal positiva). Sea $A \in \mathcal{M}_n(\mathbb{C})$. Entonces las siguientes condiciones son equivalentes:
 - (a) A es positiva.
 - (b) A es autoadjunta y $\operatorname{sp}(A) \subset [0, +\infty)$.
 - (c) Existe una matriz $B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = B^*B$.
- 4. Proposición (diagonalización unitaria de una matriz positiva).

Sea $A \in \mathcal{M}_n(\mathbb{C})$. Entonces las siguientes condiciones son equivalentes:

- (a) A es positiva.
- (b) existe una matriz unitaria U y una matriz diagonal D con entradas no negativas tales que

$$A = U^{-1}DU.$$