Definición de las operaciones con matrices

Ejercicios

Objetivos. Aprender a hacer las operaciones aritméticas con matrices. Aprender las definiciones formales de operaciones con matrices.

Requisitos. Operaciones lineales en \mathbb{R}^n , matrices definidas por medio de fórmulas.

La suma de dos matrices

1. Sean A y B matrices de tamaño $m \times n$ con entradas reales: $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$. Entonces la matriz A + B se define de la siguiente manera:

$$A + B = [A_{i,j} + B_{i,j}]_{i,j=1}^{m,n}$$

En otras palabras, la suma de dos matrices se calcula entrada por entrada. La operación que convierte A, B en A + B se llama la adición de matrices.

2. Por la definición anterior, A+B también es una matriz de tamaño $m \times n$ con entradas reales:

$$A+B\in \underbrace{\hspace{1cm}}_{2}$$

y para cada par de índices (i, j) la (i, j)-ésima entrada de la matriz A + B es la suma de las (i, j)-ésimas entradas de las matrices A y B:

$$\forall i \in \{1, \dots, m\}$$
 $\forall j \in \{1, \dots, n\}$ $(A+B)_{i,j} = A_{i,j} + B_{i,j}.$

Observación. En la definición de A + B es importante que las matrices A y B son del mismo tamaño y que las entradas de A y B pertenecen al mismo conjunto \mathbb{R} .

3. Ejemplo. Están dadas las matrices $A, B \in \mathcal{M}_{3\times 2}(\mathbb{R})$. Calcule su suma A + B.

$$A = \begin{bmatrix} 7 & -5 \\ 4 & 1 \\ -2 & 8 \end{bmatrix}, \qquad B = \begin{bmatrix} -4 & 3 \\ 8 & -3 \\ 9 & 0 \end{bmatrix}.$$

Calculamos cada entrada de la matriz A+B como la suma de las entradas correspondientes de las matrices A y B:

$$A + B = \left[\begin{array}{cc} & & \\ & -2 \\ 7 & \end{array} \right].$$

Definición de las operaciones con matrices, ejercicios, página 1 de 6

El producto de un escalar por una matriz

4. Sea λ un número real y sea A una matriz $m \times n$ con entradas reales:

$$\lambda \in \underbrace{\hspace{1cm}}_{?}$$
 y $A \in \underbrace{\hspace{1cm}}_{?}$.

Entonces la matriz λA se define de la siguiente manera:

$$\lambda A = \left[\right]_{i,j=1}^{,}.$$

En otras palabras, el producto de un escalar por una matriz se calcula entrada por entrada. La operación que convierte λ , A en λA se llama la multiplicación de escalares por matrices.

5. Por la definición anterior,

$$\lambda A \in \underbrace{\hspace{1cm}}_{2}$$

y para cada par de índices (i, j) la (i, j)-ésima entrada de la matriz λA es el producto del escalar λ por la (i, j)-ésima entrada de la matriz A:

$$\forall i \in \{1, \dots, \underbrace{\hspace{1cm}}_{j}\} \qquad \forall j \in \{1, \dots, \underbrace{\hspace{1cm}}_{j}\} \qquad (\lambda A)_{i,j} = \underbrace{\hspace{1cm}}_{j}.$$

6. Ejemplo. Están dados $\lambda \in \mathbb{R}$ y $A \in \mathcal{M}_{2\times 3}(\mathbb{R})$. Calcule λA .

$$\lambda = -3, \qquad A = \begin{bmatrix} -2 & 4 & -1 \\ 0 & 7 & 5 \end{bmatrix}.$$

Por definición, $\lambda A \in \underline{\underline{\hspace{1cm}}}$.

Calculamos cada entrada de λA como el producto del escalar λ por la entrada correspondiente de la matriz A:

$$\lambda A = \begin{bmatrix} & 6 & & \\ & & & \\ & & -21 & & \end{bmatrix}.$$

Definición de las operaciones con matrices, ejercicios, página 2 de 6

El producto de dos matrices

La suma de matrices y el producto de una matriz por un escalar se calculan entrada por entrada. La definición del producto de matrices es más complicada.

7. Sean $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, $B \in \mathcal{M}_{n \times p}(\mathbb{R})$. Entonces el producto AB se define de la siguiente manera:

$$AB = \left[\sum_{k=1}^{n} A_{i,k} B_{k,j}\right]_{i,j=1}^{m,p}.$$

Esto significa que

$$AB \in \underbrace{\hspace{1cm}}_{2}$$

y cada entrada $(AB)_{i,j}$, donde $i \in \{1, \ldots, \underbrace{\hspace{1cm}}_{\gamma}\}, j \in \{1, \ldots, \underbrace{\hspace{1cm}}_{\gamma}\}$, se calcula como

$$(AB)_{i,j} =$$

La operación que convierte A, B en AB se llama la multiplicación de matrices.

8. Determine los tamaños de los siguientes productos de matrices:

si
$$A \in \mathcal{M}_{5\times 2}(\mathbb{R})$$
 y $B \in \mathcal{M}_{2\times 3}(\mathbb{R})$, entonces $AB \in \mathcal{M}_{5\times 3}(\mathbb{R})$;

si
$$A \in \mathcal{M}_{2\times 3}(\mathbb{R})$$
 y $B \in \mathcal{M}_{4\times 3}(\mathbb{R})$, entonces AB no está definida;

si
$$A \in \mathcal{M}_{3\times 4}(\mathbb{R})$$
 y $B \in \mathcal{M}_{4\times 2}(\mathbb{R})$, entonces AB

si
$$A \in \mathcal{M}_{1\times 3}(\mathbb{R})$$
 y $B \in \mathcal{M}_{3\times 4}(\mathbb{R})$, entonces AB

si
$$A \in \mathcal{M}_{3\times 3}(\mathbb{R})$$
 y $B \in \mathcal{M}_{2\times 4}(\mathbb{R})$, entonces AB

si
$$A \in \mathcal{M}_{4\times 3}(\mathbb{R})$$
 y $B \in \mathcal{M}_{3\times 1}(\mathbb{R})$, entonces AB

si
$$A \in \mathcal{M}_{2\times 2}(\mathbb{R})$$
 y $B \in \mathcal{M}_{2\times 2}(\mathbb{R})$, entonces AB

si
$$A \in \mathcal{M}_{1\times 4}(\mathbb{R})$$
 y $B \in \mathcal{M}_{4\times 1}(\mathbb{R})$, entonces AB

si
$$A \in \mathcal{M}_{4\times 1}(\mathbb{R})$$
 y $B \in \mathcal{M}_{1\times 4}(\mathbb{R})$, entonces AB

Definición de las operaciones con matrices, ejercicios, página 3 de 6

- 9. Consideremos la suma $\sum_{k=1}^{n} A_{i,k} B_{k,j}$.
 - La suma consiste de $\underbrace{\hspace{1cm}}_{2}$ sumandos.
 - ullet Cada sumando es el producto de una entrada de A por \dots
 - El primer índice de la entrada $A_{i,k}$ es i.

Por lo tanto $A_{i,k}$ está en el _____-ésimo renglón de la matriz A.

- El segundo índice de la entrada $B_{k,j}$ es $\underbrace{\hspace{1cm}}_{?}$

Por lo tanto ...

Ejemplo. Sean $A \in \mathcal{M}_{2\times 3}(\mathbb{R})$, $B \in \mathcal{M}_{3\times 3}(\mathbb{R})$. Expresar la entrada $(AB)_{2,1}$ del producto AB a través de ciertas entradas de A y B.

Solución. Notemos que el producto AB está bien definido y es de tamaño 2×3 . La entrada $(AB)_{2,1}$ depende solamente del segundo renglón de A y de la primera columna de B:

Multiplicamos el segundo renglón de A por la primera columna de B:

$$(AB)_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} + A_{2,3}B_{3,1} = \sum_{k=1}^{3} A_{2,k}B_{k,1}.$$

10. Sean $A \in \mathcal{M}_{3\times 2}(\mathbb{R})$, $B \in \mathcal{M}_{2\times 3}(\mathbb{R})$. Exprese la entrada $(AB)_{2,3}$ del producto AB a través de entradas de A y B.

Respuesta:

$$(AB)_{2,3} =$$

Definición de las operaciones con matrices, ejercicios, página 4 de 6

11. Sea $A \in \mathcal{M}_{3\times 4}(\mathbb{R})$ y sea $B \in \mathcal{M}_{4\times 2}(\mathbb{R})$:

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\ A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\ A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \end{bmatrix}, \qquad B = \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \\ B_{3,1} & B_{3,2} \\ B_{4,1} & B_{4,2} \end{bmatrix}.$$

Calcule el producto AB:

$A_{3,1}B_{1,1} + A_{3,2}B_{2,1} + A_{3,3}B_{3,1} + A_{3,4}B_{4,1}$	

12. Sean $A \in \mathcal{M}_{4\times 2}(\mathbb{R}), B \in \mathcal{M}_{2\times 3}(\mathbb{R})$:

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \\ A_{4,1} & A_{4,2} \end{bmatrix}, \qquad B = \begin{bmatrix} B_{1,1} & B_{1,2} & B_{1,3} \\ B_{2,1} & B_{2,2} & B_{2,3} \end{bmatrix}.$$

Calcule el producto AB:

AB =		$A_{2,1}B_{1,3} + A_{2,2}B_{2,3}$
AD =		

Definición de las operaciones con matrices, ejercicios, $\,$ página 5 de 6 $\,$

13. Calcule el producto AB:

$$A = \begin{bmatrix} -5 & 1 & 3 \\ 0 & 4 & 7 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -7 \\ -1 & 8 \\ -4 & -3 \end{bmatrix}.$$

Solución:

$$AB = \begin{bmatrix} & & & 35 + 8 - 9 \\ & & & & \end{bmatrix} = \begin{bmatrix} & & 34 \\ & & & \end{bmatrix}$$

14. Calcule el producto BA, donde A y B son las matrices del ejercicio anterior.

$$B = \left[\begin{array}{c} \\ \\ \end{array} \right], \qquad A = \left[\begin{array}{c} \\ \\ \end{array} \right].$$

Solución:

Respuestas.

$$AB = \begin{bmatrix} -23 & 34 \\ -32 & 11 \end{bmatrix}, \qquad BA = \begin{bmatrix} -10 & -26 & -43 \\ 5 & 31 & 53 \\ 20 & -16 & -33 \end{bmatrix}.$$