Matrices con entradas definidas mediante fórmulas (ejercicios)

Objetivos. Conocer dos notaciones que se usan para definir matrices mediante fórmulas. Requisitos. Vectores definidos mediante fórmulas, el símbolo delta de Kronecker.

Notación. La notación $A = [f(i,j)]_{i,j=1}^{m,n}$ significa que A es una matriz de tamaño $m \times n$ tal que su entrada ubicada el i-ésimo renglón y j-ésima columna es igual a f(i,j), para cualquier $i \in \{1,\ldots,m\}$ y cualquier $j \in \{1,\ldots,n\}$. Aquí f es una función de dos argumentos, por lo común dada por una fórmula con variables i y j.

Ejemplo.
$$\left[i \operatorname{sen}(j)\right]_{i,j=1}^{3,2} = \left[\begin{array}{c} \operatorname{sen}(1) & \operatorname{sen}(2) \\ 2\operatorname{sen}(1) & 2\operatorname{sen}(2) \\ 3\operatorname{sen}(1) & 3\operatorname{sen}(2) \end{array}\right].$$

$$\textbf{Ejemplo.} \quad \left[\; g(i,j) \; \right]_{i,j=1}^{2,3} = \left[\begin{array}{ccc} g(1,1) & g(1,2) & g(1,3) \\ g(2,1) & g(2,2) & g(2,3) \end{array} \right].$$

1.
$$\left[\frac{2^i}{j+5}\right]_{i,j=1}^{2,3} =$$

2. En situaciones más complicadas se recomienda escribir de manera explícita los índices (i, j) de cada entrada y luego aplicar la fórmula f(i, j):

3. Los índices de renglones y columnas son variables mudas, no aparecen cuando escribimos la matriz en forma explícita y no necesariamente se denotan por i y j:

$$\begin{bmatrix} a^2 - t \end{bmatrix}_{t,a=1}^{2,3} = \begin{bmatrix} t=1, a=1 & t=1, a=2 & t=1, a=3 \\ \hline t=2, a=1 & t=2, a=2 & t=2, a=3 \\ \hline 1^2 - 2 & t=2, a=3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}.$$

Matrices con entradas definidas mediante fórmulas, ejercicios, página 1 de 4

Notación para matrices cuadradas. En vez de $\left[\ f(i,j) \ \right]_{i,j=1}^{n,n}$ se escribe $\left[\ f(i,j) \ \right]_{i,j=1}^{n}$.

Ejemplo.
$$\left[i^4 \cos(j) \right]_{i,j=1}^3 = \left[\begin{array}{ccc} \cos(1) & \cos(2) & \cos(3) \\ 16 \cos(1) & 16 \cos(2) & 16 \cos(3) \\ 81 \cos(1) & 81 \cos(2) & 81 \cos(3) \end{array} \right].$$

Escriba en forma extensa las siguientes matrices (en otras palabras, calcule todas sus entradas):

$$4. \quad \left[\frac{1}{i+j}\right]_{i,j=1}^3 =$$

5.
$$\left[|i-j| \right]_{i,j=1}^3 =$$

6.
$$\left[\max\{i,j\}\right]_{i,j=1}^{3} = \begin{bmatrix} i=1, j=1 & i=1, j=2 & i=1, j=3 \\ & & & & \\ & & & & \\ \hline i=2, j=1 & i=2, j=2 & i=2, j=3 \\ & & & & \\ \hline max\{2,1\} & & & & \\ \hline i=3, j=1 & i=3, j=2 & i=3, j=3 \end{bmatrix} = \begin{bmatrix} 2 & & & \\ & & & \\ & & & \\ \hline \end{bmatrix}$$

7.
$$\left[\min\{i,j\}\right]_{i,j=1}^{3} =$$

A veces las entradas de una matriz dependen sólo del índice de renglón o del índice de columna. Para no confundirnos, escribimos los índices de cada entrada y aplicamos la fórmula:

8.
$$\left[i \right]_{i,j=1}^{4,3} = \begin{bmatrix} i=1, j=1 & i=1, j=2 & i=1, j=3 \\ \hline i=2, j=1 & i=2, j=2 & i=2, j=3 \\ \hline 2 & & & & \\ \hline i=3, j=1 & i=3, j=2 & i=3, j=3 \\ \hline 3 & 3 & 3 \\ \hline i=4, j=1 & i=4, j=2 & i=4, j=3 \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}$$

9.
$$\left[j^2\right]_{i,j=1}^{2,3} =$$

10. Recuerde la definición de la delta de Kronecker:
$$\delta_{p,q} \coloneqq \left\{ \begin{array}{c} , & \text{si } p = q; \\ , & \text{si } p \neq q. \end{array} \right.$$

11.
$$\left[\delta_{i,2} \right]_{i,j=1}^{3,2} =$$

12.
$$\left[\delta_{j,1}\right]_{i,j=1}^{3} =$$

13.
$$\left[\delta_{i,j}\right]_{i,j=1}^3 =$$

14.
$$\left[\delta_{i+j,4} \right]_{i,j=1}^{3} =$$

Otro estilo de definir matrices. Una matriz se puede definir al especificar su tamaño y escribir una fórmula f(i, j) para su (i, j)-ésima entrada.

Ejemplo. Sea

$$A \in \mathcal{M}_{2\times 3}(\mathbb{R}), \qquad A_{i,j} = \frac{i}{5j}$$

Entonces para cada $i \in \{1, 2\}$ y cada $j \in \{1, 2, 3\}$ la entrada de la matriz A ubicada en el renglón i y columna j es $\frac{i}{5^j}$.

$$A = \begin{bmatrix} \frac{1}{5} & \frac{1}{25} & \frac{1}{125} \\ \frac{2}{5} & \frac{2}{25} & \frac{2}{125} \end{bmatrix}.$$

Escribir en forma explícita (extensa) las siguientes matrices:

15.
$$A \in \mathcal{M}_{3\times 2}(\mathbb{R}), \ A_{i,j} = \frac{\cos(j)}{i+5}.$$
 $A = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}.$

En vez de las variables i, j se puede usar otro par de variables.

Ejemplo. $A \in \mathcal{M}_4(\mathbb{R}), \quad A_{p,q} = p \ln(q+7).$

$$A = \begin{bmatrix} \ln(8) & \ln(9) & \ln(10) & \ln(11) \\ 2\ln(8) & 2\ln(9) & 2\ln(10) & 2\ln(11) \\ 3\ln(8) & 3\ln(9) & 3\ln(10) & 3\ln(11) \\ 4\ln(8) & 4\ln(9) & 4\ln(10) & 4\ln(11) \end{bmatrix} = \begin{bmatrix} 3\ln(2) & 2\ln(3) & \ln(10) & \ln(11) \\ 6\ln(2) & 4\ln(3) & 2\ln(10) & \ln(11) \\ 9\ln(2) & 6\ln(3) & 3\ln(10) & \ln(11) \\ 12\ln(2) & 8\ln(3) & 4\ln(10) & \ln(11) \end{bmatrix}.$$

16.
$$A \in \mathcal{M}_{2\times 3}(\mathbb{R}), \quad A_{s,t} = (-1)^t (s+10). \qquad A = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}.$$

17.
$$A \in \mathcal{M}_3(\mathbb{R}), \quad A_{i,j} = \delta_{i,2}\delta_{j,3}.$$

$$A = \begin{bmatrix} \delta_{1,2}\delta_{2,3} \\ \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}.$$

Matrices con entradas definidas mediante fórmulas, ejercicios, página 4 de 4