Espacio dual

Objetivos. Definir el espacio dual a un espacio vectorial.

Requisitos. Espacios vectoriales, transformaciones lineales, funcionales lineales.

- 1. Repaso de la definición (funcional lineal). Sea V un EV/\mathbb{F} . Un funcional lineal en V es una transformación lineal $V \to \mathbb{F}$.
- **2. Definición (espacio dual).** Sea V un espacio vectorial sobre un campo \mathbb{F} . El *espacio dual* de V denotado por V^* o V' se define como el conjunto de todos los funcionales lineales $V \to \mathbb{F}$, con operaciones lineales definidas punto a punto:

$$(\varphi + \psi)(x) := \varphi(x) + \psi(x), \qquad (\lambda \varphi)(x) := \lambda \varphi(x).$$

En otras palabras $V^* := \mathcal{L}(V, \mathbb{F})$.

3. Observación. V^* es un caso particular de $\mathcal{L}(V, W)$, por lo tanto es un espacio vectorial. Las operaciones lineales en V^* están definidas puntualmente:

$$(\varphi + \psi)(v) := \varphi(v) + \psi(v), \qquad (\lambda \varphi)(v) := \lambda \varphi(v).$$

- **4. Ejercicio.** Demuestre directamente que V^* es cerrado con respecto a las operaciones lineales. Pruebe directamente para V^* algunos de los axiomas del espacio vectorial.
- 5. Teorema (separación de un punto y un subespacio por medio de un funcional lineal). Sean V un espacio vectorial de dimensión finita sobre un campo \mathbb{F} , S un subespacio de V y $v \in V \setminus S$. Entonces existe un funcional lineal $\varphi \in V^*$ tal que $\varphi(v) = 1$ y $\varphi(w) = 0$ para todo $w \in S$.

Demostración. El espacio V es de dimensión finita y S es un subespacio de V. Por eso S también es de dimensión finita. Sea a_1, \ldots, a_m una base de S. Denotemos v por a_{m+1} . Los vectores a_1, \ldots, a_m son linealmente independientes y $a_{m+1} \notin \ell(a_1, \ldots, a_m)$, por lo tanto los vectores

$$a_1, \ldots, a_m, a_{m+1}$$

son linealmente independientes. Podemos extender esta lista de vectores a una base de V:

$$a_1, \ldots, a_m, a_{m+1}, a_{m+2}, \ldots, a_n.$$

Definamos el funcional $\varphi \colon V \to \mathbb{F}$ mediante la regla:

$$\varphi\left(\sum_{k=1}^{n} \lambda_k a_k\right) = \lambda_{m+1}.$$

En otras palabras definamos φ en los elementos de la base de la siguiente manera:

$$\varphi(a_1) = 0, \ldots, \quad \varphi(a_m) = 0, \quad \varphi(v) = 1, \quad \varphi(a_{m+2}) = 0, \ldots, \quad \varphi(a_n) = 0,$$

y luego extendemos φ a todo espacio V por linealidad. Entonces $\varphi(v)=1$ y $\varphi(w)=0$ para todo $w\in S=\ell(a_1,\ldots,a_m)$.

6. Corolario. $\varphi \in V^*$ tal que	Sean V un EV/ \mathbb{F} de dimensión finita, $v \in V \setminus \{0\}$. Entonces existe u $\varphi(v) \neq 0$.	n
$De mostraci\'on.$	Se aplica el teorema anterior al caso particular $S = \{0\}$.	
	Sean V un EV/\mathbb{F} de dimensión finita, $v \in V$. Supongamos que $\varphi(v) = V^*$. Entonces $v = 0$.	0
	Si suponemos que $v \neq 0$, entonces por el corolario anterior obtenemos qualgún $\varphi \in V^*$. Contradicción.	le]