Demostraciones de algunas propiedades simples de divisibilidad (ejercicios)

1. Ejemplo. Sean $m, s \in \mathbb{Z}$ tales que $8 \mid m \mid s$. Demostrar que $8 \mid s$.

Demostración. La suposición 8 | m significa que existe un $k \in \mathbb{Z}$ tal que $m = \underbrace{\qquad}_{\gamma}$.

La hypótesis $m \mid s$ significa que existe un $j \in \mathbb{Z}$ tal que $s = \underbrace{\hspace{1cm}}_{s = 1}$.

De estas dos igualdades obtenemos

$$s =$$
 = 8 $\underbrace{\hspace{1cm}}_{0}$

Hemos encontrado un entero $d = \underbrace{\qquad}_{?}$ tal que s = 8d.

Con esto hemos demostrado que $8 \mid s$.

2. Ejercicio. Sean $x, z \in \mathbb{Z}$ tales que 15 | x y x | z. Demuestre que 15 | z.

3. Problema. Sean $a, b, c \in \mathbb{Z}$ tales que $a \mid b \neq b \mid c$. Demuestre que $a \mid c$.

Sugerencia: la demostración es muy similar a dos razonamientos anteriores. Intente de escribir esta demostración en otra hoja de papel sin consultar los razonamientos escritos arriba.

Demostraciones simples de divisibilidad (ejercicios), página 1 de 6

4. Ejemplo. Sean $m, n \in \mathbb{Z}$ tales que 20 | m y 20 | n. Demostrar que 20 | (m+n).

Demostraci'on. La hipótesis 20 | m significa que existe un $j\in\mathbb{Z}$ tal que

La hipótesis 20 | n significa que existe un $k \in \mathbb{Z}$ tal que

$$n = \underbrace{\hspace{1cm}}_{?}$$
.

Sumando estas dos igualdades obtenemos

$$m+n=$$
 $=$ $=$ $20\left($ $=$ $?$

Hemos encontrado un entero $q = \underbrace{\qquad}_{2}$ tal que $m + n = \underbrace{\qquad}_{2}$.

5. Ejercicio. Sean $r, s \in \mathbb{Z}$ tales que 12 | r y 12 | s. Demuestre que 12 | (r+s).

6. Problema. Sean $a, b, c \in \mathbb{Z}$ tales que $a \mid b$ y $a \mid c$. Demuestre que $a \mid (b + c)$.

7. Ejemplo. Sean $u, v \in \mathbb{Z}$ tales que $9 \mid u y 9 \mid v$. Demostrar que $9 \mid (5u - 11v)$.

Demostración. Las condiciones 9 | u y 9 | v significan que existen $x, y \in \mathbb{Z}$ tales que

$$u = \underbrace{\hspace{1cm}}_{2}, \qquad v = \underbrace{\hspace{1cm}}_{2}.$$

De aquí

$$5u - 11v = 5\left(\underbrace{}_{?}\right) - 11\left(\underbrace{}_{?}\right)$$

$$= 5 \cdot \underbrace{}_{?} \cdot \underbrace{}_{?} + (-11) \cdot \underbrace{}_{?} \cdot \underbrace{}_{?} = 9\left(\underbrace{}_{?}\right).$$

Con esto hemos demostrado que $9 \mid (5u - 11v)$.

8. Ejercicio. Sean $m, n \in \mathbb{Z}$ tales que $26 \mid m \neq 26 \mid n$. Demuestre que $26 \mid (-4m + 7n)$.

9. Problema. Sean $d, a, b, x, y \in \mathbb{Z}$ tales que $d \mid a y d \mid b$. Demuestre que $d \mid (ax + by)$.

Demostraciones simples de divisibilidad (ejercicios), página 3 de 6

10. Ejercicio. Sean $a,b,c\in\mathbb{Z}$ tales que $(-5)\mid a,(-5)\mid b,(-5)\mid c$. Demuestre que $(-5)\mid (4a-6b+7c).$

11. Ejercicio. Sean $n, x, y, z, a, b, c \in \mathbb{Z}$ tales que $n \mid x, n \mid y, n \mid z$. Demuestre que $n \mid (ax + by + cz).$

12. Ejemplo. Sea $x \in \mathbb{Z}$ tal que $(-7) \mid x \mid x \neq 0$. Demostrar que $7 \leq |x|$.

Demostración. La condición $(-7) \mid x$ significa que existe un $j \in \mathbb{Z}$ tal que

$$x = \underbrace{\hspace{1cm}}_{?} . \tag{1}$$

Notamos que j no puede ser 0. En realidad, si j fuera 0, entonces por la igualdad (1) obtendríamos que $x = \underbrace{\hspace{1cm}}_{?}$ lo que contradiría a la hipótesis $x \neq 0$. Entonces $j \neq 0$.

Como j es entero y $j \neq 0$, concluimos que |j| también es entero y |j| > 0. Entonces $|j| \ge 1$.

Ahora en la igualdad (1) pasamos a valores absolutos y luego usamos la desigualdad $|j| \ge 1$:

$$|x| = \left| \underbrace{\phantom{\left| \frac{1}{2} \right|}}_{?} \right| = |-7| \left| \underbrace{\phantom{\left| \frac{1}{2} \right|}}_{?} \right| = 7 \left| \underbrace{\phantom{\left| \frac{1}{2} \right|}}_{?} \right| \geqslant 7.$$

Hemos demostrado que $|x| \ge 7$.

13. Ejercicio. Sea $m \in \mathbb{Z}$ tal que $6 \mid m$. Demuestre que $|m| \ge 6$.

14. Teorema. Sean $a, b \in \mathbb{Z}$ tales que $b \neq 0$ y $a \mid b$. Entonces $|a| \leq |b|$.

Demostración. La condición $a \mid b$ significa que existe un $k \in \mathbb{Z}$ tal que

$$b = \underbrace{\hspace{1cm}}_{?}. \tag{2}$$

Notamos que $k \neq 0$. En efecto, si razonamos por contradicción y suponemos k = 0, entonces de la igualdad (2) obtenemos $b = \underbrace{\hspace{1cm}}_{2}$, lo que contradice a una de las hipótesis

del teorema.

Como k es entero y $k \neq 0$, tenemos que |k| también es entero y |k| > 0. Entonces $|k| \geq 1$. Ahora en la igualdad (2) pasamos a valores absolutos y luego utilizamos la desigualdad $|k| \geq 1$:

$$|b| = |\underbrace{\hspace{1cm}}_{?}| = |\underbrace{\hspace{1cm}}_{?}| |\underbrace{\hspace{1cm}}_{?}| |\underbrace{\hspace{1cm}}_{?}| > 1 \cdot |\underbrace{\hspace{1cm}}_{?}| = |\underbrace{\hspace{1cm}}_{?}|.$$

Hemos demostrado que $|b| \ge \underbrace{\hspace{1cm}}_{2}$.

- **15. Ejercicio.** Sea $x \in \mathbb{Z}$ tal que $0 \mid x$. Demuestre que x = 0.
- **16. Teorema.** Sean $a, b \in \mathbb{Z}$ tales que $a \mid b \neq b \mid a$. Entonces a = b o a = -b.

Demostración. I. Primero consideremos el caso cuando alguno de los números a, b es cero.

Si a = 0, entonces de la condición $a \mid b$ se sigue que ______.

Si
$$b = 0$$
, entonces de la condición $\underbrace{\hspace{1cm}}_{?}$ se sigue que $\underbrace{\hspace{1cm}}_{?}$

Resumiendo: si alguno de los números a, b es cero, entonces el otro también, y en este caso a = b.

II. Ahora consideremos el caso cuando $a \neq 0$ y $b \neq 0$.

Como $a \neq 0$ y $b \mid a$, por el Teorema 14 obtenemos $|b| \leq |a|$.

Como $b \neq 0$ y _____, por el Teorema 14 obtenemos _____.

De estas dos desigualdades se sigue que |a| = |b|, pero esto es posible solamente si a = b o a = -b.

Demostraciones simples de divisibilidad (ejercicios), página 6 de 6