Dimensión del subespacio

Objetivos. Estudiar las relaciones entre bases del subespacio y bases del espacio.

Requisitos. Bases, dimensión.

1. Teorema (reducción de una lista de vectores que generan al espacio a una base del espacio). Sea V un espacio vectorial sobre un campo \mathbb{F} y sea $\mathcal{A} = (a_1, \ldots, a_m)$ una de vectores tal que $\ell(\mathcal{A}) = V$. Entonces existe una sublista \mathcal{B} de \mathcal{A} que es una base de V. En otras palabras, existen índices $i_1, \ldots, i_n \in \{1, \ldots, m\}$ tales que $i_1 < \ldots < i_n$ y a_{i_1}, \ldots, a_{i_n} es una base de V.

Demostración. Vamos a encontrar índices diferentes $i_1, i_2, \ldots, i_n \in \{1, \ldots, n\}$ de tal manera que los vectores $b_1 = a_{i_1}, b_2 = a_{i_2}, \ldots, b_n = a_{i_n}$ sean linealmente independientes y generen al espacio V.

Definimos i_1 como el índice del primer vector no nulo:

$$i_1 := \min \Big\{ j \in \{1, \dots, m\} \colon \ a_j \neq \mathbf{0} \Big\}.$$

Sea i_2 el índice mínimo de los vectores que no son múltiplos de a_{i_1} :

$$i_2 := \min \Big\{ j \in \{1, \dots, m\} \colon \ a_j \notin \ell(a_{i_1}) \Big\}.$$

Sea i_3 el índice mínimo de los vectores que no son combinaciones lineales de a_{i_1} y a_{i_2} :

$$i_3 := \min \Big\{ j \in \{1, \dots, m\} \colon a_j \notin \ell(a_{i_1}, a_{i_2}) \Big\}.$$

En general, en cada paso buscamos el primer vector que no sea combinación lineal de los vectores encontrados en los pasos anteriores:

$$i_k := \min \left\{ j \in \{1, \dots, m\} \colon a_j \notin \ell(a_{i_1}, \dots, a_{i_{k-1}}) \right\}.$$

Después de algún número de pasos que denotemos por n llegamos a la situación que todos los vectores a_1, \ldots, a_m son combinaciones lineales de los vectores elegidos a_{i_1}, \ldots, a_{i_n} . Entonces es fácil ver que

$$i_1 < i_2 < \ldots < i_n$$

los vectores a_{i_1}, \ldots, a_{i_n} son linealmente independientes (pues ninguno de estos es combinación lineal de los anteriores) y generan a todos los vectores a_1, \ldots, a_n , por lo tanto generan a todos los vectores del espacio V.

2. Teorema (ampliación de una lista linealmente independiente de vectores a una base). Sea V un espacio vectorial sobre un campo \mathbb{F} , de dimensión finita n, y sea $\mathcal{A} = (a_1, \ldots, a_m)$ una lista linealmente independiente de vectores de V, m < n. Entonces \mathcal{A} se puede ampliar a una base del espacio V, esto es, existen $a_{m+1}, \ldots, a_n \in V$ tales que $\mathcal{B} = (a_1, \ldots, a_m, a_{m+1}, \ldots, a_n)$ es una base de V.

Primera demostración. Sea $\mathcal{U}=(u_1,\ldots,u_n)$ una base de V. Consideramos la lista de vectores

$$(\mathcal{A},\mathcal{U})=a_1,\ldots,a_m,u_1,\ldots,u_n.$$

Esta lista contiene a \mathcal{U} y por lo tanto genera a V. Aplicando la demostración del teorema anterior a la lista $(\mathcal{A}, \mathcal{U})$ obtenemos una base del espacio V cuyos primeros elementos son a_1, \ldots, a_m , pues ninguno de estos vectores es combinación lineal de los anteriores.

Segunda demostración. Sabemos que la dimensión de V es el tamaño mínimo de los sistemas que generan a V. Si el tamaño de un sistema es estrictamente menor que n, entonces el subespacio generado por este sistema es un subconjunto propio de V.

En cada de los pasos $k = m+1, \ldots, n$ añadimos al sistema a_1, \ldots, a_{k-1} obtenido en el paso anterior un vector $a_k \in V \setminus \ell(a_1, \ldots, a_{k-1})$. Esto es posible porque $k-1 < \dim(V)$ y $\ell(a_1, \ldots, a_{k-1}) \neq V$.

3. Corolario (ampliación de una base del subespacio hasta una base del espacio). Sea V un EV/\mathbb{F} de dimensión finita, sea S un subespacio de V y \mathcal{A} una base de S. Entonces \mathcal{A} se puede ampliar a una base \mathcal{B} de V. En particular, $\dim(S) \leq \dim(V)$.

Demostración. Como \mathcal{A} es una base de S, \mathcal{A} es linealmente independiente.

4. Ejemplo. Ampliar el sistema de vectores

$$v_1 = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}, \qquad v_2 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

hasta una base de \mathbb{R}^3 .

5. Ejemplo. Construir una base de S y ampliarla a una base de V:

$$V = \mathcal{M}_2(\mathbb{R}), \qquad S = \{A \in \mathcal{M}_2(\mathbb{R}) \colon A^\top = -A\}.$$

Soluci'on. El subespacio S consiste en las matrices antisimétricas. La forma general de las matrices antisimétricas es

$$A = \begin{bmatrix} 0 & A_{1,2} \\ -A_{1,2} & 0 \end{bmatrix} = A_{1,2}B, \quad \text{donde} \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

donde $A_{1,2}$ es un número real arbitrario. Por lo tanto la matriz B forma una base del subespacio S, y dim(S) = 1. Para ampliar esta báse a una base del espacio $\mathcal{M}_2(\mathbb{R})$ consideramos la lista de matrices

$$B, \quad E_{1,1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_{1,2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_{2,1} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad E_{2,2} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Es fácil ver que

$$E_{1,1} \notin \ell(B),$$
 $E_{1,2} \notin \ell(B, E_{1,1}),$ $E_{2,1} = -B + E_{1,2} \in \ell(B, E_{1,1}, E_{1,2}),$ $E_{2,2} \notin \ell(B, E_{1,1}, E_{1,2}).$

Por lo tanto $B, E_{1,1}, E_{1,2}, E_{2,2}$ es una base de V.

6. Ejemplo. Construir una base de S y ampliarla a una base de V:

$$V = \mathcal{M}_2(\mathbb{R}), \qquad S = \ell(I) = \{\lambda I \colon \lambda \in \mathbb{R}\}.$$

El sistema (I) que consiste en un elemento I es una base de S. Para ampliarla hasta una base de V, consideremos al sistema $I_2, E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}$ donde $E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}$ es la base canónica de $\mathcal{M}_2(\mathbb{R})$. Es fácil ver que

$$I_2 \notin \ell(\emptyset),$$
 $E_{1,1} \notin \ell(I),$ $E_{1,2} \notin \ell(I, E_{1,2}),$ $E_{2,1} \notin \ell(I, E_{1,1}, E_{1,2}),$ $E_{2,2} \in \ell(I, E_{1,1}, E_{1,2}, E_{2,1}).$

Respuesta: $I, E_{1,1}, E_{1,2}, E_{2,1}$.

7. Ejemplo. Construir una base de S y ampliarla hasta una base de V:

$$V = \mathcal{P}_2(\mathbb{R}), \qquad S = \{ f \in \mathcal{P}_2(\mathbb{R}) : \ f(-4) = 0 \}.$$

Cualquier polinomio $f \in \mathcal{P}_2(\mathbb{R})$ tiene forma $f(x) = \alpha + \beta x + \gamma x^2$. La condición f(-4) = 0 en términos de los coeficientes α, β, γ significa que $\alpha - 4\beta + 16\gamma = 0$. De allí $\alpha = 4\beta - 16\gamma$, y la solución general es

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 4\beta - 16\gamma \\ \beta \\ \gamma \end{bmatrix} = \beta \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} -16 \\ 0 \\ 1 \end{bmatrix}.$$

Los polinomios

$$f_1(x) = 4 + x,$$
 $f_2(x) = -16 + x^2$

forman una base de S. Es fácil ver que f_1, f_2, e_0 es una base de $\mathcal{P}_2(\mathbb{R})$.

Dimensión del subespacio, página 3 de 4

8. Ejercicio. En el espacio vectorial $\mathcal{P}_2(\mathbb{R})$ considere al conjunto

$$S := \{ f \in \mathcal{P}_2(\mathbb{R}) \colon f(2) = f(-1) \}.$$

Demuestre que S es un subespacio del espacio vectorial $\mathcal{P}_2(\mathbb{R})$, construya una base de S y amplie esta base a una base de $\mathcal{P}_2(\mathbb{R})$.

9. Ejercicio. En el espacio vectorial $\mathcal{M}_2(\mathbb{R})$ considere al conjunto de las matrices simétricas:

$$S := \{ A \in \mathcal{M}_2(\mathbb{R}) \colon A^\top = A \}.$$

Demuestre que S es un subespacio del espacio vectorial $\mathcal{M}_2(\mathbb{R})$, construya una base de S y amplie esta base a una base de $\mathcal{M}_2(\mathbb{R})$.

10. Ejercicio. En el espacio vectorial $\mathcal{M}_2(\mathbb{R})$ considere al conjunto de las matrices antisimétricas:

$$S := \{ A \in \mathcal{M}_2(\mathbb{R}) \colon A^\top = -A \}.$$

Demuestre que S es un subespacio del espacio vectorial $\mathcal{M}_2(\mathbb{R})$, construya una base de S y amplie esta base a una base de $\mathcal{M}_2(\mathbb{R})$.

- 11. Ejercicio. En el espacio $\mathcal{M}_3(\mathbb{R})$ consideremos al subespacio $\mathfrak{ut}_3(\mathbb{R})$ de todas las matrices triangulares superiores. Demuestre que $\mathfrak{ut}_3(\mathbb{R})$ es un subespacio de $\mathcal{M}_3(\mathbb{R})$ y encuentre una base de $\mathfrak{ut}_3(\mathbb{R})$.
- 12. Teorema (de un subespacio cuya dimensión coincide con la dimensión del espacio). Sea V un EV/\mathbb{F} de dimensión finita n y sea S un subespacio de V tal que $\dim(S) = n$. Entonces S = V.

Demostración. Sea $\mathcal{E} = (e_1, \dots, e_n)$ una base de S. Como \mathcal{E} consiste en n elementos y es linealmente independiente, es una base de V. De allí $V = \ell(\mathcal{E}) = S$.

- **13. Corolario.** Sean S_1, S_2 subespacios de un espacio vectorial V. Supongamos que $S_1 \subset S_2$ y dim $(S_1) = \dim(S_2) < +\infty$. Entonces $S_1 = S_2$.
- 14. Ejemplos. Para cada uno de los siguientes conjuntos probar que es un subespacio, hallar una base y calcular la dimensión:
 - 1. En el espacio $\mathcal{P}(06(\mathbb{R}))$ considerar el conjunto S de todos los polinomios impares, esto es, de los polinomios $f \in \mathcal{P}(06(\mathbb{R}))$ tales que f(-t) = -f(t).
 - 2. En el espacio $\mathcal{P}_2(\mathbb{R})$ considerar el conjunto S de los polinomios f tales que

$$\int_{0}^{2} f(t) dt = 0.$$