Permutaciones

Tareas adicionales

Los problemas auxiliares de estas tareas adicionales no son muy difíciles y corresponden al nivel obligatorio de conocimientos. Los problemas principales de estas tareas adicionales no se incluyen en los exámenes.

Cálculo de la inversa de una permutación en términos de su descomposición en ciclos disjuntos

Problemas auxiliares

1. Escriba la siguiente permutación en forma explícita (en dos lineas), calcule su inversa y escriba el resultado en forma cíclica:

$$\varphi = c_8(5, 1, 7, 4, 2).$$

2. Escriba la siguiente permutación en forma explícita (en dos lineas), calcule su inversa y escriba el resultado en forma cíclica:

$$\varphi = c_9(1,6) c_9(2,7,8) c_9(3) c_9(4,9,6).$$

Problemas principales

- 3. La inversa de una permutación cíclica. Enuncie y demuestre una fórmula para φ^{-1} , donde φ es una permutación cíclica.
- 4. Cálculo de la inversa de una permutación en términos de su descomposición en ciclos disjuntos. Enuncie la fórmula general y explique la idea de demostración.
- 5. El decremento de la permutación inversa. Sea $\varphi \in S_n$. Demuestre que

$$d(\varphi^{-1}) = d(\varphi).$$

Cualquier permutación de puede descomponer en un producto de transposiciones simples

Problemas auxiliares

Transposición simple. Una transposición $\tau_{p,q}$ se llama simple si |p-q|=1.

6. Calcule el producto de las siguientes permutaciones del conjunto $\{1, \ldots, 9\}$:

$$\tau_{3,4}\tau_{4,7}\tau_{3,4}$$
.

7. Calcule el producto de las siguientes permutaciones del conjunto $\{1, \ldots, 7\}$:

$$\tau_{2,3}\tau_{3,5}\tau_{2,3}$$
.

8. Calcule el producto de las siguientes permutaciones del conjunto $\{1, \ldots, 8\}$:

$$\tau_{2,3}\tau_{3,4}\tau_{4,5}\tau_{5,6}\tau_{4,5}\tau_{3,4}\tau_{2,3}$$
.

9. Recuerde cómo se puede factorizar una permutación en un producto de transposiciones.

Problemas principales

- **10.** E. scriba la transposición $\tau_{3,6}$ del conjunto $\{1,\ldots,9\}$ como un producto de transposiciones simples.
- **11.** Sean $2 \le p < q \le n$. Calcule el producto de las siguiente permutaciones del conjunto $\{1, \ldots, n\}$:

$$\tau_{p-1,p}\tau_{p,q}\tau_{p-1,p}$$
.

- 12. Descomposición de una transposición en un producto de transposiciones simples. Demuestre por inducción sobre k la siguiente afirmación: para cualquier $k \in \{1, \ldots, n-1\}$ y cualquier $q \in \{2, \ldots, n\}$, la transposición $\tau_{q-k,q}$ se puede escribir como un producto de k transposiciones simples.
- 13. Muestre con un ejemplo cómo factorizar una permutación en un producto de transposiciones simples.

Funciones simétricas

Problemas auxiliares

- 14. Recuerde cómo factorizar una permutación en un producto de transposiciones. Puede explicarlo con un ejemplo.
- **15.** Sea $f: X^n \to \mathbb{F}$ una función de n argumentos y sea φ una permutación del conjunto $\{1, \ldots, n\}$. Recuerde cómo se define la función φf .
- **16.** Sea $f: X^n \to \mathbb{F}$ una función de n argumentos y sean $\varphi, \psi \in S_n$. Recuerde la fórmula para $\varphi(\psi f)$.
- 17. Sea $f: X^n \to \mathbb{F}$ una función tal que para cualquier φ en S_n se cumple la igualdad $\varphi f = f$. Demuestre que f es simétrica.

Problemas principales

- **18.** Sea $f: X^n \to \mathbb{F}$ una función simétrica y sea φ en S_n . Demuestre que $\varphi f = f$.
- **19.** Sean $f, g, h: X^2 \to \mathbb{R}$, donde g es simétrica, h es antisimétrica y f = g + h. Sean $a, b \in X$. Exprese g(a, b) y h(a, b) en términos de f, a y b.
- **20.** Sea $f: X^2 \to \mathbb{R}$. Construya una función simétrica $g: X^2 \to \mathbb{R}$ y una función antisimétrica $h: X^2 \to \mathbb{R}$ tales que f = g + h.