Condición del cociente para la convergencia de series

Objetivos. Demostrar el teorema de d'Alembert sobre la convergencia de series de números positivos en términos del comportamiento del cociente

$$\frac{a_{k+1}}{a_k}$$

Prerrequisitos. Convergencia de series de números positivos, comparación de dos series de números positivos, el límite superior y el límite inferior de una sucesión.

Aplicaciones. Convergencia de series de potencias.

Teorema 1. Sea $a \in (0, +\infty)^{\mathbb{N}_0}$ y sea

$$u := \limsup_{k \to \infty} \frac{a_{k+1}}{a_k}.$$

Si u < 1, entonces $\sum_{k=0}^{\infty} a_k < +\infty$.

Demostración. Supongamos que u < 1. Pongamos

$$b_m := \sup_{k > m} \frac{a_{k+1}}{a_k}.$$

Recordemos que

$$\limsup_{k\to\infty}\frac{a_{k+1}}{a_k}=\inf_{m\in\mathbb{N}_0}\sup_{k\geq m}\,\frac{a_{k+1}}{a_k}=\inf_{m\in\mathbb{N}_0}b_m.$$

Sea $w \in (u, 1)$. Por ejemplo, podemos poner

$$w \coloneqq \frac{u+1}{2}.$$

Por la definición del ínfimo, existe m en \mathbb{N}_0 tal que $b_m < w$. Por lo tanto,

$$\forall k \in \mathbb{N}_0 \qquad \frac{a_{k+1}}{a_k} \le w.$$

Razonando por inducción matemática sobre k, con $k \ge m$, es fácil ver que

$$\forall k \ge m \qquad a_k \ge a_m w^m.$$

Como
$$\sum_{k=m}^{\infty} a_m w^m < +\infty$$
, concluimos que $\sum_{k=m}^{\infty} a_k < +\infty$ y $\sum_{k=0}^{\infty} a_k < +\infty$.

Teorema 2. Sea $a \in (0, +\infty)^{\mathbb{N}_0}$ y sea

$$v := \liminf_{k \to \infty} \frac{a_{k+1}}{a_k}.$$

Si v > 1, entonces $\sum_{k=0}^{\infty} a_k = +\infty$.

Ejercicio 3. Demostrar el teorema.

Condición del cociente para la convergencia de series, página 1 de 1