El producto de dos series de potencias convergentes

Objetivos. Demostrar que la convolución de dos series formales corresponde al producto de sus sumas, cuando las series convergen de manera absoluta.

Prerrequisitos. Convergencia y convergencia absoluta de series de potencias, fórmula de Cauchy–Hadamard, series formales.

Teorema 1. Sea $a \in \mathbb{C}^{\mathbb{N}_0}$, $b \in \mathbb{C}^{\mathbb{N}_0}$, c := a * b, esto es

$$c_j \coloneqq \sum_{k=0}^{j} a_{j-k} b_k.$$

Supongamos que las series a y b tienen radios de convergencia R_1 y R_2 , respectivamente, donde $R_1 > 0$ y $R_2 > 0$. Pongamos $R_3 := \min\{R_1, R_2\}$. Entonces, c tiene radios convergencia $\geq R_3$. Denotemos por f, g, h las sumas de las series correspondientes. Entonces, para cada z con $|z| < R_3$,

$$h(z) = f(z)g(z).$$

Demostración. Sea $r < R_3$ y sea s tal que $r < s < R_3$. Sabemos que existe M > 0 tal que

$$|a_k| \le \frac{M}{s^k}, \qquad |b_k| \le \frac{M}{s^k}.$$

Para cada n en \mathbb{N}_0 , pongamos

$$P_n(z) := \sum_{k=0}^n a_k z^k, \qquad Q_n(z) := \sum_{k=0}^n b_k z^k, \qquad S_n(z) := \sum_{k=0}^n c_k z^k.$$

Notamos que

$$P_n(z)Q_n(z) - S_n(z) = \sum_{j=n+1}^{2n} \left(\sum_{k=j-n}^n a_{j-k}b_k\right) z^j.$$

Para z tal que $|z| \leq r$,

$$|P_n(z)Q_n(z) - S_n(z)| \le \sum_{i=n+1}^{2n} n \cdot \frac{M^2}{s^j} \cdot r^j \le n^2 M^2 \left(\frac{s}{r}\right)^j.$$

La última expresión tiende a cero, cuando $j \to \infty$. Por lo tanto,

$$|S_n(z) - f(z)g(z)| \le |S_n(z) - P_n(z)Q_n(z)| + |P_n(z)Q_n(z) - f(z)g(z)| \to 0.$$