El principio de módulo máximo para las funciones holomorfas (un caso particular)

Objetivos. Demostrar el principio de módulo máximo para las funciones holomorfas y sus valores en las circunferencias.

Prerrequisitos. La identidad de Parseval para las funciones analíticas. Equivalencia entre las funciones holomorfas y analíticas.

Teorema 1 (la identidad de Parseval para las series de potencias, repaso). Sea $c \in \mathbb{C}^{\mathbb{N}_0}$ y sea $a \in \mathbb{C}$. Denotemos por R el radio de convergencia de la siguiente serie de potencias y por f su suma:

$$f(z) := \sum_{k=0}^{\infty} c_k (z - a)^k \qquad (|z - a| < R). \tag{1}$$

Entonces, para cada r que satisface 0 < r < R,

$$\sum_{k=0}^{\infty} |c_k|^2 r^{2k} = \frac{1}{2\pi} \int_{0}^{2\pi} |f(a+r e^{i\vartheta})|^2 d\vartheta.$$
 (2)

Teorema 2 (el principio de módulo máximo). Sean Ω un conjunto abierto conexo en \mathbb{C} , $f \in H(\Omega)$, $a \in \Omega$, r > 0 tal que $a + r \operatorname{cl}(\mathbb{D}) \subseteq \Omega$,

$$M \coloneqq \max_{\vartheta \in [0,2\pi]} |f(a + r e^{i\vartheta})|.$$

 $Entonces, \ |f(a)| \leq M. \ \textit{M\'{a}s a\'{u}n}, \ si \ |f(a)| = M, \ entonces \ f \ \ es \ una \ \ constante \ \ en \ \Omega.$

Demostración. Sea $R_1 := d(a, \mathbb{C} \setminus \Omega)$. Como f es analítica en Ω , f admite una expansión en series de potencias en el disco $a + R_1\mathbb{D}$:

$$f(z) = \sum_{k=0}^{\infty} c_k (z-a)^k$$
 $(|z-a| < R_1).$

Sea R el radio de la convergencia de esta serie de potencias. Como $a + r\operatorname{cl}(\mathbb{D}) \subseteq \Omega$, concluimos que

$$r < R_1 \le R$$
.

Aplicamos (2) y acotamos la integral usando la cota superior de la función:

$$\sum_{k=0}^{\infty} |c_k|^2 r^{2k} \le \frac{1}{2\pi} \int_{0}^{2\pi} |f(a+r e^{i\vartheta})|^2 d\vartheta \le M^2.$$

El principio de módulo máximo para las funciones holomorfas, página 1 de 2

En particular,

$$|f(a)|^2 = |c_0|^2 \le \sum_{k=0}^{\infty} |c_k|^2 r^{2k} \le M^2.$$

Si |f(a)| = M, entonces concluimos que $c_k = 0$ para cada k en \mathbb{N} . Entonces, f es una constante en el disco $a + R_1 \mathbb{D}$. Por el principio de unicidad, concluimos que f es una constante en la región Ω .

Corolario 3 (el principio del módulo mínimo). Supongamos que se cumplen las condiciones del Teorema 2 y f no tiene ceros en $a + r\mathbb{D}$. Entonces,

$$|f(a)| \ge \min_{\vartheta \in [0,2\pi]} |f(a+r e^{i\vartheta})|. \tag{3}$$

Demostración. Si f se anula en un punto de la circunferencia $a + r\mathbb{T}$, entonces la desigualdad es obvia. Supongamos que f no se anula en $a + r\mathbb{T}$. Entonces, f no se anula en $a + r\operatorname{cl}(\mathbb{D})$. Denotemos por v al ínfimo de los valores de |f| en $a + r\operatorname{cl}(\mathbb{D})$:

$$v := \inf_{z \in a + r \operatorname{cl}(\mathbb{D})} |f(z)|.$$

Como $a+r\operatorname{cl}(\mathbb{D})$ es un compacto y |f| es continua, |f| alcanza este valor v, es decir, existe un punto z_1 en $a+r\operatorname{cl}(\mathbb{D})$ tal que $|f(z_1)|=v$. Concluimos que v>0.

Sea $R_1 := d(a, \mathbb{C} \setminus \Omega)$. Por la continuidad uniforme de f, existe $\delta > 0$ tal que si $|z - w| < \delta$, entonces |f(z) - f(w)| < v. Encontramos r_1 tal que $r_1 > r$, $r_1 < r + \delta$ y $r_1 < R_1$. Por ejemplo,

$$r_1 := \min \left\{ r + \frac{\delta}{2}, \frac{r + R_1}{2} \right\}.$$

En particular, esto garantiza que $a + r_1 \mathbb{D} \subseteq \Omega$. Más aún, para cada z en $a + r_1 \mathbb{D}$ existe w en $a + r \operatorname{cl}(\mathbb{D})$ tal que $|w - z| < \delta$, y

$$|f(z)| \ge |f(w)| - |f(w) - f(z)| > v - v = 0.$$

Hemos demostrado que f no se anula en el disco $a + r_1 \mathbb{D}$. Definimos $g: a + r_1 \mathbb{D} \to \mathbb{C}$,

$$g(z) \coloneqq \frac{1}{f(z)}.$$

Como g es holomorfa, podemos aplicar el Teorema 2 a la función g:

$$|g(a)| \le \max_{\vartheta \in [0,2\pi]} |g(a + r e^{i\vartheta})|.$$

Es fácil ver que

$$\max_{\vartheta \in [0,2\pi]} |g(a+r e^{i\vartheta})| = \frac{1}{\min_{\vartheta \in [0,2\pi]} |f(a+r e^{i\vartheta})|}.$$

De allí obtenemos el resultado.

El principio de módulo máximo para las funciones holomorfas, página 2 de 2