Invertibilidad local de funciones holomorfas

Objetivos. Demostrar que las funciones holomorfas no constantes convierten conjuntos abiertos en conjuntos abiertos. Más aún, si f' no se anula en algún punto z_0 , entonces f es invertible en alguna vecindad de z_0 , y si $f - f(z_0)$ tiene cero de orden m, entonces $f - f(z_0)$ se puede representar como la m-ésima potencia de una función holomorfa e invertible en una vecindad de z_0 .

Prerrequisitos. Funciones holomorfas, equivalencia entre las funciones holomorfas y funciones analíticas, la estructura de ceros de funciones holomorfas, el principio del valor mínimo para las funciones holomorfas.

Proposición 1. Sea Ω un subconjunto abierto de \mathbb{C} , y sea $f \in H(\Omega)$. Sean $z, w \in \Omega$ tales que $\operatorname{conv}(z, w) \subseteq \Omega$. Entonces,

$$f(z) - f(w) = (z - w) \int_{0}^{1} f'((1 - t)z + tw) dt.$$

Demostración. Sabemos que g' es continua. Consideremos $\gamma \colon [0,1] \to \mathbb{C}$ y $h \colon [0,1] \to \mathbb{C}$,

$$\gamma(t) := (1 - t)z + tw, \qquad h(t) := f(\gamma(t)).$$

Entonces,

$$h'(t) = f'(\gamma(t)) \gamma'(t) = f'(\gamma(t)) (z - w).$$

Como h' es continua, podemos aplicar el segundo teorema fundamental del cálculo a la función h:

$$f(z) - f(w) = h(1) - h(0) = \int_{0}^{1} h'(t) dt = (z - w) \int_{0}^{1} f'((1 - t)z + tw) dt.$$

Proposición 2. Sea Ω un subconjunto abierto y conexo de \mathbb{C} , y sea $f \in H(\Omega)$. Definimos $g \colon \Omega^2 \to \Omega$,

$$g(z,w) := \begin{cases} \frac{f(z) - f(w)}{z - w}, & z \neq w; \\ f'(z), & z = w. \end{cases}$$

Entonces, g es continua.

Demostración. Si $a \neq b$, entonces la continuidad en (a,b) es fácil. Para demostrar la continuidad en (a,b), aplicar la Proposición 1.

Teorema 3 (sobre la invertibilidad local de funciones holomorfas, cuando la derivada no se anula). Supongamos que Ω un conjunto abierto y conexo, $f \in H(\Omega)$, $z_0 \in \Omega$ y $f'(z_0) \neq 0$. Entonces, existe una vecindad abierta V del punto z_0 tal que

Invertibilidad local de funciones holomorfas, página 1 de 3

- \bullet φ es inyectiva en V,
- $W \coloneqq \varphi[V]$ es abierto,
- la función $\psi \colon W \to V$, definida como la inversa de $\varphi|_V^W$, es holomorfa en W.

Proposición 4. Sea Ω un subconjunto abierto y conexo de \mathbb{C} y sea $f \in H(\Omega)$ tal que f'(z) = 0 en Ω . Entonces, f es una constante.

Demostración. 1. Sean $a, b \in \Omega$ tales que $conv(a, b) \subseteq \Omega$. Definimos $\gamma : [0, 1] \to \mathbb{C}$,

$$\gamma(t) := (1-t)a + tb,$$

y definimos $h: [0,1] \to \mathbb{C}, h(t) := f(\gamma(t))$. Entonces, h es derivable, y su derivada es cero:

$$h'(t) = f'(\gamma(t))\gamma'(t) = 0.$$

Por el segundo teorema fundamental del cálculo,

$$h(1) - h(0) = \int_{0}^{1} h'(t) dt = 0,$$

esto es, f(b) = f(a).

- 2. Si $a \in \Omega$, entonces existe r > 0 tal que $D(a, r) \subseteq \Omega$. Como D(a, r) es convexo, para todos los puntos de D(a, r) obtenemos f(b) = f(a).
- 3. Fijamos $z_0 \in \Omega$ y pongamos

$$A := \{ z \in \Omega \colon \ f(z) = f(z_0) \}.$$

Como f es continua, A es cerrado. Por la segunda parte de la demostración, A es abierto. Como $z_0 \in A$ y Ω es conexo, concluimos que $\Omega = A$.

Teorema 5. Sea Ω un conjunto abierto y conexo y sea $f \in H(\Omega)$. Supongamos que f no es constante. Sea $z_0 \in \Omega$. Pongamos $w_0 := f(z_0)$. Denotemos por m al orden del cero de la función $f - w_0$ en el punto z_0 . Entonces, existen una vecindad abierta V del punto z_0 , una función $\varphi \in H(V)$ y un número r > 0 con las siguientes propiedades:

$$f(z) = w_0 + \varphi(z)^m \qquad (z \in V),$$

 φ' no se anula en V y φ es un biholomorfismo $V \to D(0,r)$.

Demostración. 1. Primero, elegimos $\Omega_1 \subseteq \Omega$ tal que Ω_1 es abierto y convexo, $z_0 \in \Omega_1$ y $f(z) \neq w_0$ para cada z en $\Omega_1 \setminus \{z_0\}$. Representamos f en la forma

$$f(z) - w_0 = (z - z_0)^m g(z)$$
 $(z \in \Omega_1),$

Invertibilidad local de funciones holomorfas, página 2 de 3

donde $g \in H(\Omega_1)$ y g no tiene ceros en Ω_1 . Entonces, $g'/g \in H(\Omega_1)$. Por lo tanto, existe $\alpha \in H(\Omega_1)$ tal que

$$\frac{g'}{g} = \alpha'.$$

Definimos $\beta \in H(\Omega_1)$,

$$\beta(z) := q(z) \exp(-\alpha(z)).$$

Entonces,

$$\beta'(z) = g'(z) \exp(-\alpha(z)) + g(z) \exp(-\alpha(z))(-\alpha'(z)) = 0 \qquad (z \in \Omega_1).$$

Por la Proposición 4, $\beta(z) = \beta(z_0)$ para cada z en Ω_1 . Notamos que $\beta(z_0) \neq 0$. Encontramos c en \mathbb{C} tal que

$$\exp(c) = \beta(z_0).$$

Definimos $h: \Omega_1 \to \mathbb{C}$,

$$h(z) := \alpha(z) + c$$
.

Entonces, para cada z en Ω_1 ,

$$g(z) = \beta(z) \exp(\alpha(z)) = \beta(z_0) \exp(\alpha(z)) = \exp(c) \exp(\alpha(z))$$
$$= \exp(\alpha(z) + c) = \exp(h(z)).$$

2. Definimos $\psi \colon \Omega_1 \to \mathbb{C}$,

$$\psi(z) := (z - z_0) \exp\left(\frac{h(z)}{m}\right).$$

Entonces, para cada z en Ω_1 ,

$$\psi(z)^m = (z - z_0)^m \exp(h(z)) = f(z) - w_0.$$

Además.

$$\psi'(z) = \exp\left(\frac{h(z)}{m}\right) + (z - z_0) \exp\left(\frac{h(z)}{m}\right) \frac{h'(z)}{m}.$$

Por lo tanto, $\psi'(z_0) = 0$.

3. Luego, se puede elegir una vecindad abierta W del punto z_0 tal que $\psi'|_W$ no se anula, ψ es inyectiva en W, y $\psi(W)$ contiene un disco de la forma $D(w_0, r)$, con r > 0. Pongamos $V := \psi^{-1}[D(w_0, r)]$ y definimos $\varphi := \psi|_V$. Entonces, φ tiene las propiedades requeridas.

Teorema 6. Supongamos que Ω es un subconjunto abierto y conexo de \mathbb{C} , $f \in H(\Omega)$, y f es inyectiva. Entonces, $f'(z) \neq 0$ para cada z en Ω , y la inversa de f también es holomorfa.

Demostración. Si $f'(z_0) = 0$ para algún z_0 en Ω , entonces f no es inyectiva en una vecindad de z_0 .