Coseno y seno hiperbólico de un argumento real

(ejercicios)

Objetivos. Estudiar propiedades de las funciones chysh con domininio \mathbb{R} .

Requisitos. Definición de las funciones hiperbólicas ch y sh, derivada y monotonía de funciones, propiedades de la función exponencial.

1. Definición del coseno y seno hiperbólico de un argumento real. En esta sección tratamos ch y sh como funciones de argumentos reales:

$$\operatorname{ch} : \mathbb{R} \to \mathbb{R}, \qquad \operatorname{ch}(x) \coloneqq \frac{e^x + \dots}{2};$$

$$\operatorname{sh} \colon \mathbb{R} \to \mathbb{R}, \quad \operatorname{sh}(x) \coloneqq \frac{e^x}{2}.$$

- **3. Ceros.** Encuentre todos los valores de $x \in \mathbb{R}$ tales que $\operatorname{ch}(x) = 0$. Encuentre todos los valores de $x \in \mathbb{R}$ tales que $\operatorname{sh}(x) = 0$.
- **4. Signos.** Resuelva cada una de las desigualdades (puede usar el resultado del ejercicio anterior y el teorema del valor intermedio):

$$ch(x) > 0$$
, $ch(x) < 0$, $sh(x) > 0$, $sh(x) < 0$.

Primeras derivadas y monotonía

5. Derivada de la función exponencial (repaso).

Se sabe que para todo $x \in \mathbb{R}$,

$$(e^x)' = \underbrace{\hspace{1cm}}_?, \qquad (e^{-x})' = \underbrace{\hspace{1cm}}_?$$

6. Calcule las derivadas de ch y de sh:

$$ch'(z) = \left(\frac{1}{2}\right)' = sh'(z) = \left(\frac{1}{2}\right)' = sh'(z) = \left(\frac{1}{2}\right)' = sh'(z) = s$$

7. Puntos donde se anulan las derivadas de ch y sh.

Encuentre todos los puntos $x \in \mathbb{R}$ tales que $\operatorname{ch}'(x) = 0$.

Encuentre todos los puntos $x \in \mathbb{R}$ tales que sh'(x) = 0.

8. Intervalos de monotonía de ch y sh. Encuentre intervalos donde ch' > 0; donde ch' < 0; donde sh' > 0; donde sh' < 0. Basándose en estos resultados encuentre intervalos donde ch crece; ch decrece; sh crece; sh decrece.

Segundas derivadas y convexidad

9. Calcule las segundas derivadas de ch y sh:

$$ch'' = \underbrace{\hspace{1cm}}_?, \qquad sh'' = \underbrace{\hspace{1cm}}_?.$$

10. Encuentre todos los puntos $x \in \mathbb{R}$ tales que ch"(x) = 0. Encuentre todos los puntos $x \in \mathbb{R}$ tales que sh"(x) = 0.

11. Encuentre intervalos donde ch" > 0; donde ch" < 0; donde sh" > 0; donde sh" < 0. Recuerde cómo está relacionado el signo de la segunda derivada de una función con su convexidad.

12. Convexidad y signo de la segunda derivada.

Indique correspondencias con flechas (\rightarrow) :

$$f'' \ge 0$$
 $f \text{ es convexa } \smile$

$$f'' \le 0 \qquad \qquad \boxed{f \text{ es c\'oncava} \land}$$

Límites en $+\infty$ y en $-\infty$

13. Comportamiento de exp cerca de $+\infty$ y $-\infty$ (repaso).

$$\lim_{x \to +\infty} \exp(x) = \underbrace{\qquad}_{x \to -\infty} \exp(x) = \underbrace{\qquad}_{x \to -\infty}$$

14. Usando la información del ejercicio anterior calcule los siguientes límites:

$$\lim_{x\to +\infty} \exp(2x) = \underbrace{\qquad}_{x\to +\infty} \exp(-x) = \underbrace{\qquad}_{x\to +\infty} \exp(-2x) = \underbrace{\qquad$$

15. Para calcular el límite de ch(x) cuando $x \to +\infty$ recuerde su definición (en términos de la función exponencial) y factorice el término mayor en el numerador:

$$\lim_{x \to +\infty} \operatorname{ch}(x) = \lim_{x \to +\infty} \frac{\operatorname{e}^{x} (1 + \underline{\hspace{1cm}})}{2} = \underline{\hspace{1cm}}_{x \to +\infty} \frac{\operatorname{e}^{x} (1 + \underline{\hspace{1cm}})}{2} = \underline{\hspace{1cm}}_{x \to +\infty}.$$

16. De manera similar calcule el límite de sh(x) cuando $x \to +\infty$:

$$\lim_{x \to +\infty} \operatorname{sh}(x) =$$

17. Para calcular el límite de ch(x) cuando $x \to -\infty$ haga el cambio de variables y = -x y use el hecho que ch es una función : $\underbrace{\qquad \qquad }_{par/impar}$:

$$\lim_{x \to -\infty} \operatorname{ch}(x) = \lim_{y \to +\infty} \operatorname{ch}(-y) = \lim_{y \to +\infty} \underline{\qquad} = \underline{\qquad}.$$

18. El límite de $\operatorname{sh}(x)$ cuando $x \to -\infty$ se calcula de manera similar usando el hecho que sh es una función :

$$\lim_{x \to -\infty} \operatorname{sh}(x) =$$

Valores en los puntos $0, \pm 1, \pm 2$

Se sabe que

$$\exp(1) \approx 2.72,$$
 $\exp(2) \approx 7.39,$ $\exp(-1) \approx 0.37,$ $\exp(-2) \approx 0.14.$

19. Calcule los valores de ch en los puntos 0, 1, 2. Para calcular sus valores en los puntos -1, -2 use el hecho que ch es una función _____.

$$ch(0) = \frac{2}{2} = \underbrace{}_{?};$$

$$ch(1) \approx \frac{2.72 + 0.37}{2} = \frac{3.09}{2} \approx 1.54;$$

$$ch(-1) \approx \underbrace{}_{?};$$

$$ch(2) \approx \underbrace{}_{?};$$

$$ch(-2) \approx \underbrace{}_{?};$$

20. Calcule los valores de sh en los puntos 0, 1, 2, 3. Luego calcule sus valores en los puntos -1, -2, -3 usando el hecho que sh es una función _____.

$$sh(0) = \underbrace{\hspace{1cm}}_{?};$$
 $sh(1) \approx = \underbrace{\hspace{1cm}}_{?}; \qquad sh(-1) \approx \underbrace{\hspace{1cm}}_{?};$
 $sh(2) \approx \underbrace{\hspace{1cm}}_{?}; \qquad sh(-2) \approx \underbrace{\hspace{1cm}}_{?};$

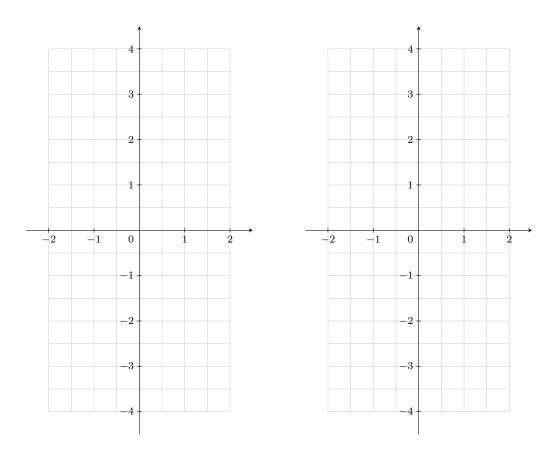
21. Tangente a la gráfica de sh en el punto 0.

Calcule sh'(0) y determine la pendiente de la tangente a la gráfica de la función sh en el punto 0.

Coseno y seno hiperbólico de un argumento real, ejercicios, página 5 de 13

Gráficas

22. Usando los resultados de todos los ejercicios anteriores dibuje las gráficas de ch y sh.



23. Tarea optativa: dibujar las gráficas con un programa.

Dibuje las gráficas de ch y sh en un programa. Por ejemplo, puede instalar Gnuplot (www.gnuplot.info) y ejecutar en Gnuplot los siguientes comandos:

```
set size ratio 2
plot [-2:2] [-4:4] cosh(x)
plot [-2:2] [-4:4] sinh(x)
```

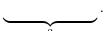
Conjunto de valores

- **24.** Cuando x corre de 0 a $+\infty$, ch(x) corre de a
 - a _____.

Usando el teorema del valor

medio/intermedio

se puede demostrar que ch toma todos los valores del intervalo



La función ch
 es $\underbrace{\qquad }_{\text{par/impar}}, \text{ por eso en el intervalo } (-\infty, 0)$

toma valores de _____a a ___

25. De manera similar analice qué valores toma la función sh.

26. Determine las imágenes (los conjuntos de valores) de las funciones ch y sh:

$$\operatorname{im}(\operatorname{ch}) := \{ y \in \mathbb{R} : \exists x \in \mathbb{R} \ y = \operatorname{ch}(x) \} = \underbrace{\hspace{1cm}}_{?}$$

$$\operatorname{im}(\operatorname{sh}) = \underbrace{\hspace{1cm}}_{?}$$

27. Determine si la función ch: $\mathbb{R} \to \mathbb{R}$ cumple con las siguientes propiedades:

¿es inyectiva? ¿es suprayectiva? ¿es biyectiva?

Haga un análisis similar para la función sh: $\mathbb{R} \to \mathbb{R}$:

¿es inyectiva? ¿es biyectiva? ¿es biyectiva?

Coseno y seno hiperbólico de un argumento real, ejercicios, página 7 de 13

Ecuación cuadrática $t^2 - 2at - 1 = 0$

28. Solución de la ecuación $x^2 = p$ (repaso).

Consideramos la ecuación $x^2 = p$ con un parámetro real p y una incógnita real x.

Esta ecuación tiene solución si y sólo si p satisface la condición

En este caso las soluciones son

$$x = \underbrace{\hspace{1cm}}_{?}$$
 $y \quad x = \underbrace{\hspace{1cm}}_{?}$

la cuales coinciden si $p = \underbrace{\hspace{1cm}}_{2}$

29. Cuadrado de la diferencia (repaso).

Recuerde la fórmula:

$$(t-a)^2 = \underbrace{\hspace{1cm}}_{?}.$$

30. Completar el cuadrado.

La ecuación $t^2 - 2at - 1 = 0$ se puede escribir en la forma

$$t^2 - 2at = 1.$$

Sume a ambos lados una expresión tal que el lado izquierdo se complete a un cuadrado:

$$t^2 - 2at + \underbrace{\hspace{1cm}}_{2} = 1 + \underbrace{\hspace{1cm}}_{2}.$$

Llegamos a la siguente ecuación equivalente a la ecuación original:

$$(t \underbrace{\hspace{1cm}}_{?})^2 = \underbrace{\hspace{1cm}}_{?}.$$

31. Análisis y solución.

Determine si la ecuación tiene solución real para todo $a \in \mathbb{R}$ o bajo ciertas restricciones.

Resuelva la ecuación:

$$t = \underbrace{\hspace{1cm}}_{?} = \underbrace{\hspace{1cm}}_{?} \qquad \qquad o \qquad \qquad t = \underbrace{\hspace{1cm}}_{?} = \underbrace{\hspace{1cm}}_{?}$$

$$t = \underbrace{\hspace{1cm}}_{?} \qquad \qquad o \qquad \qquad t = \underbrace{\hspace{1cm}}_{?} = \underbrace{\hspace{1cm}}_{?}$$

Coseno y seno hiperbólico de un argumento real, ejercicios, página 8 de 13

Ecuación cuadrática $t^2 - 2at + 1 = 0$

32. Completar el cuadrado.

La ecuación $t^2 - 2at + 1 = 0$ se puede escribir en la forma

$$t^2 - 2at = -1.$$

Sume a ambos lados una expresión tal que el lado izquierdo se complete a un cuadrado:

$$t^2 - 2at + \underbrace{\hspace{1cm}}_{2} = \underbrace{\hspace{1cm}}_{2} - 1.$$

Llegamos a la siguente ecuación equivalente a la ecuación original:

$$\left(t \underbrace{\hspace{1cm}}_{2}\right)^{2} = \underbrace{\hspace{1cm}}_{2}. \tag{1}$$

33. Análisis.

Determine si la ecuación (1) tiene solución real para todo $a \in \mathbb{R}$ o bajo ciertas restricciones.

34. Solución.

Suponiendo que a satisface la condición establecida en el ejercicio anterior resuelva la ecuación (1):

$$t = \underbrace{\hspace{1cm}}_{?} = \underbrace{\hspace{1cm}}_{?} \qquad \qquad 0 \qquad \qquad t = \underbrace{\hspace{1cm}}_{?} \qquad \qquad t = \underbrace{\hspace{1cm}}_{?} \qquad \qquad 0$$

Denotemos estas dos raíces por t_1 y t_2 .

35. Determine cuándo $t_1 = t_2$.

36. Análisis de raíces.

Calcule el producto t_1t_2 . Suponiendo que $t_1 \neq t_2$ compare t_1 y t_2 con 1.

Coseno y seno hiperbólico de un argumento real, ejercicios, página 9 de 13

Funciones hiperbólicas inversas

37. Solución de la ecuación $\exp(x) = t$ (repaso). Consideramos la ecuación

$$e^x = t$$
,

38. Función inversa a la función sh. Del análisis anterior sigue que para todo $y \in \mathbb{R}$ existe un único $x \in \mathbb{R}$ tal que $\operatorname{sh}(x) = y$. Este x se puede calcular de manera explícita y se llama $\operatorname{arcoseno\ hiperb\'olico}$ de y. Lo vamos a denotar por $\operatorname{ash}(y)$. Otras notaciones comunes son arcsenh, asenh, arsh.

Resuelva la ecuación sh(x) = y por medio del cambio de variables $t = e^x$:

$$\frac{e^x - }{2} = y \qquad \Longleftrightarrow \qquad t - \underbrace{ } = 2y$$

$$\iff$$
 $t =$

$$\iff$$
 $e^x =$

$$\iff$$
 $x =$

39. Resumen: arcoseno hiperbólico.

$$ash: \underbrace{\hspace{1cm}} \rightarrow \underbrace{\hspace{1cm}}_{2}, \quad ash(y) = \ln(\underbrace{\hspace{1cm}}_{2}).$$

La función ash es inversa a la función sh:

$$\forall x \in \underbrace{\qquad}_{?} \qquad \operatorname{ash}(\operatorname{sh}(x)) = \underbrace{\qquad}_{?}$$

$$\forall y \in \underbrace{\qquad}_{?} \qquad \operatorname{sh}(\operatorname{ash}(y)) = \underbrace{\qquad}_{?}$$

Coseno y seno hiperbólico de un argumento real, ejercicios, página 10 de 13

40. La función ch: $\mathbb{R} \to \mathbb{R}$ no es inyectiva ni suprayectiva. Por eso la restringimos al invervalo donde esta función es estrictamente creciente.

La función ch
 crece estrictamente en el intervalo $X\coloneqq \underbrace{\hspace{1cm}}_{2}$.

El conjunto de valores de ch
 en el intervalo X es $Y \coloneqq \operatorname{ch}(X) = \underline{\hspace{1cm}}$

Consideramos la función

$$\operatorname{ch}_+\colon \underbrace{\hspace{1cm}}_{X} \to \underbrace{\hspace{1cm}}_{Y}.$$

Esta función es inyectiva y suprayectiva, por lo tanto invertible. La función inversa a ch₊ se llama el *arcocoseno hiperbólico*. La denotemos por ach. Otras notaciones comunes son arccosh, acosh y arch.

41. Supongamos que $y \in \underbrace{\hspace{1cm}}_{2}$ para que la ecuación $\operatorname{ch}(x) = y$ tenga solución.

Resuelva la ecuación ch(x) = y por medio del cambio de variables $t = e^x$:

$$\frac{e^x + \dots}{2} = y \qquad \Longleftrightarrow \qquad t + \dots = 2y$$

$$\iff$$
 $t =$ \iff $\exp(x) =$ \iff $x =$

42. Resumen: arcocoseno hiperbólico.

La función ach es inversa a la función ch₊:

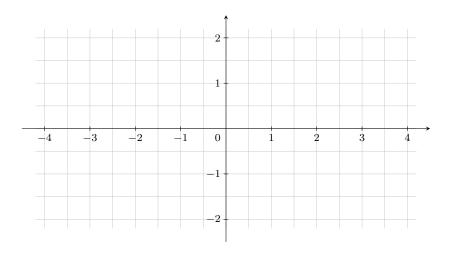
$$\forall x \in \underbrace{\qquad}_{?} \qquad \operatorname{ach}(\operatorname{ch}(x)) = \underbrace{\qquad}_{?}$$

$$\forall y \in \underbrace{\qquad}_{?} \qquad \operatorname{ch}(\operatorname{ach}(y)) = \underbrace{\qquad}_{?}$$

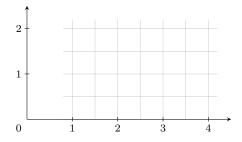
Coseno y seno hiperbólico de un argumento real, ejercicios, página 11 de 13

Gráficas de las funciones hiperbólicas inversas

43. Dibuje la gráfica de ash.



44. Dibuje la gráfica de ach.



Solución de ecuaciones sh(x) = y y ch(x) = ycon incógnitas reales y parámetros reales

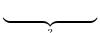
45. Resumen: solución de ecuación sh(x) = y en variables reales. Consideremos la ecuación sh(x) = y, donde x es una incógnita real, y es un parámetro real.

La ecuación $\operatorname{sh}(x) = y$ tiene solución si y sólo si $y \in \underbrace{\hspace{1cm}}_{?}$

Para todo $y \in \underbrace{\hspace{1cm}}_{?}$, la ecuación tiene $\underbrace{\hspace{1cm}}_{\text{¿cuántas soluciones?}}$.

 $x = \underbrace{\hspace{1cm}}_{?}(y) = \ln(\underbrace{\hspace{1cm}}_{?}).$

46. Resumen: solución de ecuación ch(x) = y en variables reales. Consideremos la ecuación ch(x) = y, donde x es una incógnita real, y es un parámetro real.



Separamos dos casos: y = 1 y $\underbrace{\hspace{1cm}}_{2}$.

Para todo $y \in \underbrace{\hspace{1cm}}_{?}$, la ecuación tiene $\underbrace{\hspace{1cm}}_{\text{¿cuántas soluciones?}}$.

 $x = \underbrace{\hspace{1cm}}_{2}(y) = \underbrace{\hspace{1cm}}_{2} \ln(\underbrace{\hspace{1cm}}_{2}).$