Coseno y seno hiperbólico de un argumento complejo

(ejercicios)

Objetivos. Estudiar propiedades de las funciones ch y sh con domininio \mathbb{C} .

Requisitos. Propiedades de la función exponencial (incluso la periodicidad), definición de las funciones hiperbólicas ch y sh, definición de las funciones trigonométricas a través de la función exponencial.

1. Definición del coseno y seno hiperbólico de un argumento complejo (repaso).

En esta sección tratamos ch y sh como funciones de argumentos complejos:

$$\operatorname{ch} \colon \mathbb{C} \to \mathbb{C},$$

$$\operatorname{ch}(z) \coloneqq \frac{\exp(z) + \dots}{2}$$

$$\operatorname{sh} \colon \mathbb{C} \to \mathbb{C}$$

$$\begin{split} \operatorname{ch} \colon \mathbb{C} &\to \mathbb{C}, & \operatorname{ch}(z) \coloneqq \frac{\exp(z) +}{2}; \\ \operatorname{sh} \colon \mathbb{C} &\to \mathbb{C}, & \operatorname{sh}(z) \coloneqq \frac{\exp(z)}{2}. \end{split}$$

Por brevedad vamos a escribir e^z en vez de $\exp(z)$.

2. Paridad. Recuerde las fórmulas:

$$\operatorname{ch}(-x) = \underbrace{\hspace{1cm}},$$

$$\sinh(-x) =$$

Expresión de las funciones trigonométricas a través de las hiperbólicas y viceversa

3. Definición de las funciones trigonométricas a través de la función exponencial (repaso). Las funciones trigonométricas $\cos : \mathbb{C} \to \mathbb{C}$ y sen : $\mathbb{C} \to \mathbb{C}$ se pueden definir a través de la función exponencial por las fórmulas de Euler:

$$\cos(z) \coloneqq \frac{e^{iz} + \dots}{2}; \qquad \qquad \operatorname{sen}(z) \coloneqq \frac{e^{iz}}{\dots};$$

- 5. Expresión de cos y sen a través de ch y sh. Escriba cos y sen en términos de ch y sh:

$$\cos(z) = \underbrace{\hspace{1cm}}_?; \hspace{1cm} \sin(z) = \underbrace{\hspace{1cm}}_?$$

- **6.** Si w = i z, entonces $z = \underbrace{\qquad}_{?} w$.
- 7. Expresión de ch y sh a través de cos y sen. Escriba ch y sh en términos de cos y sen:

$$\operatorname{ch}(z) = \cos(\underbrace{\hspace{1cm}}_{z}) = \underbrace{\hspace{1cm}}_{z}, \qquad \operatorname{sh}(z) = \underbrace{\hspace{1cm}}_{z} = \underbrace{\hspace{1cm}}_{z}$$

8. Resumen.

$$cos(z) =$$
 $sen(z) =$ $ch(z) =$ $sh(z) =$

Coseno y seno hiperbólico de un argumento complejo, ejercicios, página 2 de 8

Deducción de las fórmulas para ch(a+b) y sh(a+b) (repaso)

9. Escriba los siguientes productos como semisumas o semirestas de ch(a+b), ch(a-b), sh(a+b) y sh(a-b).

$$ch(a) ch(b) = \frac{e^a + e^b +$$

$$sh(a) sh(b) =$$

$$ch(a) sh(b) =$$

$$\operatorname{sh}(a)\operatorname{ch}(b) =$$

10. Fórmulas para los productos de ch y sh. Resumen:

$$\operatorname{ch}(a)\operatorname{ch}(b) = \frac{1}{2} \left(\qquad \qquad \right) \qquad \operatorname{ch}(a)\operatorname{sh}(b) = \frac{1}{2} \left(\qquad \qquad \right)$$

$$\operatorname{sh}(a)\operatorname{sh}(b) = \operatorname{sh}(a)\operatorname{ch}(b) =$$

11. Sumando algunas dos fórmulas del ejercicio 10 deduzca una fórmula para ch(a + b). Sumando otras dos fórmulas del ejercicio 10 deduzca una fórmula para sh(a + b).

12. Fórmulas para ch(a + b) y sh(a + b). Resumen:

$$\operatorname{ch}(a+b) = \operatorname{sh}(a+b) =$$

13. Usando las fórmulas del ejercicio anterior y las propiedades de paridad de ch y sh escriba fórmulas para ch(a - b) y sh(a - b):

$$ch(a-b) = sh(a-b) =$$

Coseno y seno hiperbólico de un argumento complejo, ejercicios, página 3 de 8

Fórmulas para $ch^2(x)$ y $sh^2(x)$ (repaso)

14. Deduzca fórmulas para $ch^2(x)$ y $sh^2(x)$.

15. Resumen.

$$\operatorname{ch}^{2}(x) = \frac{}{2},\tag{1}$$

$$\mathrm{sh}^2(x) = \frac{}{2}. (2)$$

16. Comprobación con x = 0.

Evalue ambos lados de (1) en el punto x = 0:

$$ch^2(0) = \underbrace{\hspace{1cm}}_2, \qquad \underbrace{\hspace{1cm}}_2 = \underbrace{\hspace{1cm}}_2$$

Evalue ambos lados de (2) en el punto x = 0:

$$\mathrm{sh}^2(0) = \underbrace{\hspace{1cm}}_2, \qquad \underbrace{\hspace{1cm}}_2$$

17. Comprobación con $x \to +\infty$.

Calcule los límites de ambos lados de (1) cuando $x \to +\infty$:

$$\lim_{x \to +\infty} \operatorname{ch}^{2}(x) = \underbrace{\hspace{1cm}}_{?}, \qquad \lim_{x \to +\infty} \underbrace{\hspace{1cm}}_{2} = \underbrace{\hspace{1cm}}_{?}.$$

Calcule los límites de ambos lados de (2) cuando $x \to +\infty$:

$$\lim_{x \to +\infty} \operatorname{sh}^{2}(x) = \underbrace{\hspace{1cm}}_{2}, \qquad \lim_{x \to +\infty} \underbrace{\hspace{1cm}}_{2} = \underbrace{\hspace{1cm}}_{2}.$$

Coseno y seno hiperbólico de un argumento complejo, ejercicios, página 4 de 8

Fórmulas para $\cos^2(y)$ y $\sin^2(y)$ (repaso)

18. Deduzca fórmulas para $\cos^2(y)$ y $\sin^2(y)$ usando las fórmulas de Euler:

$$\cos^{2}(y) = \left(\frac{e^{iy} + \dots}{2}\right)^{2} = \frac{e^{2iy} + \dots}{4} = \frac{1}{2}\left(\frac{\dots}{2} + \dots\right) = \frac{1}{2}\left(\frac{\dots}{2}\right);$$

 $sen^2(y) =$

19. Resumen.

$$\cos^2(y) = \frac{1}{2},\tag{3}$$

$$\operatorname{sen}^{2}(y) = \frac{1}{2}.$$
 (4)

20. Comprobación con y = 0. Evalue ambos lados de (3) en el punto y = 0:

$$\cos^2(0) = \underbrace{\hspace{1cm}}_2, \qquad \underbrace{\hspace{1cm}}_2.$$

Evalue ambos lados de (4) en el punto y = 0:

$$\operatorname{sen}^2(0) = \underbrace{\hspace{1cm}}_{?}, \qquad \qquad \underbrace{\hspace{1cm}}_{2} = \underbrace{\hspace{1cm}}_{?}.$$

21. Comprobación con $y = \frac{\pi}{2}$. Evalue ambos lados de (3) en el punto $y = \frac{\pi}{2}$:

$$\cos^2\left(\frac{\pi}{2}\right) = \underbrace{\hspace{1cm}}_{2}, \qquad \qquad \underbrace{\hspace{1cm}}_{2}.$$

Evalue ambos lados de (4) en el punto y = 0:

$$\operatorname{sen}^{2}\left(\frac{\pi}{2}\right) = \underbrace{\hspace{2cm}}_{?}, \qquad \qquad \underbrace{\hspace{2cm}}_{2}$$

Coseno y seno hiperbólico de un argumento complejo, ejercicios, página 5 de 8

Partes real e imaginaria de las funciones hiperbólicas

Copiamos los resultados de algunos de los ejercicios anteriores:

22. Fórmulas para ch(a+b) y sh(a+b).

$$\operatorname{ch}(a+b) = \operatorname{sh}(a+b) =$$

23. Expresión de $\cos(y)$ y $\sin(y)$ en términos de $\mathrm{ch}(\mathrm{i}\,y)$ y $\mathrm{sh}(\mathrm{i}\,y)$.

$$cos(y) = ch($$
 $),$ $sen(y) = sh($ $).$

24. Sean $x, y \in \mathbb{R}$. Exprese $\operatorname{ch}(x + \mathrm{i} y)$ y $\operatorname{sh}(x + \mathrm{i} y)$ a través de $\operatorname{ch}(x)$, $\operatorname{sh}(x)$, $\operatorname{cos}(y)$, $\operatorname{sen}(y)$.

$$ch(x + iy) = ch(x) ch(iy) +$$

$$sh(x + iy) =$$

25. Las partes reales e imaginarias de ch y sh (resumen).

$$\operatorname{ch}(x + \mathrm{i}\, y) =$$

$$\operatorname{sh}(x + \mathrm{i}\, y) =$$

Valor absoluto de las funciones hiperbólicas

26. Recuerde cómo se expresan $\operatorname{ch}^2(x)$ y $\operatorname{sh}^2(x)$ a través de $\operatorname{ch}(2x)$:

$$ch^{2}(x) = \frac{1}{2}$$
, $sh^{2}(x) = \frac{1}{2}$.

27. Recuerde cómo se expresan $\cos^2(y)$ y $\sin^2(y)$ a través de $\cos(2y)$:

$$\cos^2(y) = \frac{1}{2}, \qquad \qquad \operatorname{sen}^2(y) = \frac{1}{2}.$$

28. Cuadrado del valor absoluto de un número complejo. Sean $a, b \in \mathbb{R}$. Recuerde cómo se expresa $|a + i b|^2$ a través de a y b:

29. Calcule $|\operatorname{ch}(x + iy)|^2 y |\operatorname{sh}(x + iy)|^2$.

Cálculo del argumento (ángulo) de ch(x + iy) y de sh(x + iy)

30. Cómo calcular la forma polar de un número complejo (repaso). Sean $a,b\in\mathbb{R}$ tales que $a^2+b^2\neq 0$.

Denotemos a + ib por c. Recordemos cómo escribir c en la forma polar

$$a + ib = r e^{i\varphi}$$
.

El valor absoluto (radio) de c se puede calcular por la fórmula

$$r = \sqrt{}$$
.

El argumento (ángulo) φ del número complejo c se determina salvo un sumando de la forma $2k\pi$ con $k \in \mathbb{Z}$. Se cumplen las fórmulas:

$$\cos(\varphi) = \frac{1}{r}, \quad \sin(\varphi) = \qquad \operatorname{tg}(\varphi) = \qquad \operatorname{ctg}(\varphi) =$$

Para calcular φ , uno puede usar cualquiera de estas ecuaciones, recordar la definición de las funciones trigonométricas inversas y tomar en cuenta los signos de a y b.

31. Calcule $tg(\varphi)$, donde φ es un argumento (ángulo) del número complejo ch(x+iy).

32. Calcule $\operatorname{tg}(\varphi)$, donde φ es un argumento (ángulo) del número complejo $\operatorname{sh}(x+\operatorname{i} y)$.