Fórmulas principales para funciones hiperbólicas (ejercicios)

Objetivos. Deducir fórmulas principales para las funciones hiperbólicas ch y sh, partiendo de su definición a través de la función exponencial.

Requisitos. Función exponencial y su propiedad principal, definición de las funciones ch y sh.

1. Definición de la función exponencial (repaso).

La función exponencial $\exp \colon \mathbb{C} \to \mathbb{C}$ se define mediante la siguiente serie de potencias:

$$\exp(z) \coloneqq \sum_{k=0}^{\infty} \underbrace{\hspace{1cm}}_{2}.$$

Se sabe que esta serie converge absolutamente para todo $z \in \mathbb{C}$. Por brevedad, en vez de $\exp(z)$ escribimos e^z .

2. Propiedad principal de la función exponencial (repaso). Para todos $a, b \in \mathbb{C}$,

3. Definición de las funciones ch y sh (repaso). Para todo $z \in \mathbb{C}$,

$$ch(z) := sh(z) :=$$

4. Paridad de las funciones ch
 y sh (repaso). Para todo $z \in \mathbb{C}$,

Esto significa que ch es una función $\underbrace{\qquad \qquad }_{par/impar}$ y sh es una función $\underbrace{\qquad \qquad }_{par/impar}$

5. Identidad fundamental para funciones hiperbólicas. Simplifique la expresión:

$$\operatorname{ch}^2(z) - \operatorname{sh}^2(z) =$$

Fórmulas principales para funciones hiperbólicas, ejercicios, página 1 de 8

Fórmulas para multiplicar cosenos y senos hiperbólicas

6. Hay que reconocer las funciones hiperbólicas cuando estas aparecen como sumas o restas de funciones exponenciales de argumentos opuestos:

$$\frac{\exp(x^2 - 7y) + \exp(7y - x^2)}{2} = \operatorname{ch}(x^2 - 7y),$$

$$\frac{\exp(3a - b) - \exp(b - 3a)}{2} = \underbrace{}_{?},$$

$$\exp(6a) + 2 + \exp(-6a) = 2 + \underbrace{}_{?},$$

$$\exp(-3y) - \exp(3y) = \underbrace{}_{?}.$$

7. Fórmula para multiplicar ch por ch. Aplique la definición de la funcion ch:

$$2\operatorname{ch}(a)\operatorname{ch}(b) = 2 - \frac{2}{2} \cdot \frac{2}{2}$$

haga la multiplicación usando las leyes aritméticas y la propiedad principal de la función exponencial:

$$=\frac{e^{a+b}+}{2}$$

agrupe los sumandos y escriba el resultado a través de funciones hiperbólicas:

$$= \frac{2}{2} + \frac{2}{2}$$
$$= \operatorname{ch}(a+b) + \underbrace{2}_{?}.$$

Resumen:

$$2\operatorname{ch}(a)\operatorname{ch}(b) = \qquad .$$

8.	Fórmula	para	multi	plicar	\mathbf{sh}	por	sh.
Ο.	1 Of III ala	para	munu	pncar	211	POI	211.

$$2\operatorname{sh}(a)\operatorname{sh}(b) =$$

Resumen:

$$2\operatorname{sh}(a)\operatorname{sh}(b) =$$

9. Fórmula para multiplicar ch por sh.

$$2 \operatorname{ch}(a) \operatorname{sh}(b) =$$

Resumen:

$$2\operatorname{ch}(a)\operatorname{sh}(b) = \qquad .$$

Cambiando los papeles de a y b:

$$2\operatorname{sh}(a)\operatorname{ch}(b) =$$

Fórmulas principales para funciones hiperbólicas, ejercicios, $\,$ página 3 de 8 $\,$

Fórmulas para $ch^2(a)$, $sh^2(a)$ y ch(a) sh(a)

10. Valores de ch y sh en el punto 0.

11. Recuerde las fórmulas deducidas en los ejercicios anteriores:

$$2\operatorname{ch}(a)\operatorname{ch}(b) =$$

$$2\operatorname{sh}(a)\operatorname{sh}(b) =$$

$$2 \operatorname{ch}(a) \operatorname{sh}(b) =$$

12. En las fórmulas del ejercicio anterior ponga b=a:

$$2 \operatorname{ch}^2(a) =$$

$$2 \operatorname{sh}^2(a) =$$

$$2\operatorname{ch}(a)\operatorname{sh}(a) =$$

13. Los mismos resultados se pueden obtener directamente:

$$2 \operatorname{ch}^{2}(a) = 2 \frac{\left(\right)^{2}}{4} =$$

$$2 \operatorname{sh}^2(a) =$$

$$2\operatorname{ch}(a)\operatorname{sh}(a) =$$

14. Resumen.

$$2\operatorname{ch}^2(a) = \qquad .$$

$$2 \operatorname{sh}^2(a) =$$

$$2\operatorname{ch}(a)\operatorname{sh}(a) =$$

Fórmulas principales para funciones hiperbólicas, ejercicios, $\,$ página 4 de 8 $\,$

Fórmulas para $ch^3(a)$ y $sh^3(a)$

- 15. Recuerde la fórmula: $(p+q)^3 =$
- **16.** Poniendo -q en lugar de q: $(p-q)^3 =$
- 17. Calcule el producto, agrupe los sumandos y conviértalos en funciones hiperbólicas:

$$ch^{3}(a) = \frac{\left(\right)^{3}}{8} = \frac{}{8}$$

$$= \frac{1}{4} \left(\frac{}{2} + 3 - \frac{}{2} \right) = \frac{1}{4} \left(\frac{}{2} + 3 - \frac{}{2} \right).$$

De aquí se puede despejar ch(3a): ch(3a) =

18. De manera similar deduzca una fórmula para $sh^3(a)$, luego despeje sh(3a).

19. Resumen.

$$ch^3(a) = \frac{1}{4} ($$
).

$$sh^3(a) = \frac{1}{4} ($$
).

$$ch(3a) =$$

$$sh(3a) =$$

Fórmulas principales para funciones hiperbólicas, ejercicios, $\,$ página 5 de 8 $\,$

Fórmulas para ch(a+b) y sh(a+b)

20. Fórmulas para multiplicar cosenos y senos hiperbólicas (repaso).

$$2\operatorname{ch}(a)\operatorname{ch}(b) = \tag{1}$$

$$2\operatorname{sh}(a)\operatorname{sh}(b) = \tag{2}$$

$$2\operatorname{ch}(a)\operatorname{sh}(b) = \tag{3}$$

$$2\operatorname{sh}(a)\operatorname{ch}(b) = \tag{4}$$

21. Deducción de la fórmula para ch(a + b).

Sumando las fórmulas $(\underbrace{\hspace{1cm}})$ y $(\underbrace{\hspace{1cm}})$ en el lado derecho obtenemos $2\operatorname{ch}(a+b)$:

$$= 2 \operatorname{ch}(a+b)$$

De aquí

22. Deducción de la fórmula para sh(a + b).

Sumando las fórmulas ($\underbrace{\hspace{1cm}}_{?}$) y ($\underbrace{\hspace{1cm}}_{?}$) en el ladó derecho obtenemos $2 \operatorname{sh}(a+b)$:

$$= 2\operatorname{sh}(a+b)$$

Resumen:

$$\operatorname{sh}(a+b) =$$

Fórmulas para $\operatorname{ch}(a-b)$ y $\operatorname{sh}(a-b)$

23. Fórmulas para ch(a + b) y sh(a + b) (repaso).

Escriba las fórmulas obtenidas en los ejercicios anteriores:

$$ch(a+b) =$$

$$sh(a+b) =$$

24. Usando la fórmula para ch(a + b) y las propiedades de paridad de ch y sh deduzca una fórmula para ch(a - b):

$$ch(a-b) = ch(a+(-b)) = ch(a) ch(-b) \underline{\qquad} = \underline{\qquad} = \underline{\qquad}.$$

Ahora para sh(a - b):

$$sh(a - b) =$$

Resumen:

$$ch(a-b) =$$

$$\operatorname{sh}(a-b) =$$

25. Vamos a hacer una comprobación (muy particular e incompleta) de las fórmulas obtenidas. En las fórmulas para ch(a - b) y sh(a - b) calcule ambos lados para b = a.

Fórmulas para sumar cosenos hiperbólicos y para sumar senos hiperbólicos

26. Fórmula para multiplicar cosenos y senos hiperbólicas (repaso).

Recuerde las fórmulas deducidas anteriormente:

$$2\operatorname{ch}(a)\operatorname{ch}(b) =$$

$$2\operatorname{ch}(a)\operatorname{sh}(b) =$$

$$2\operatorname{sh}(a)\operatorname{sh}(b) =$$

27. Dados $x,y\in\mathbb{C}$ buscamos $a,b\in\mathbb{C}$ que satisfagan el siguiente sistema de ecuaciones lineales:

$$\left\{\begin{array}{cccc} a & + & b & = & x; \\ a & - & b & = & y. \end{array}\right.$$

Resuelva el sistema (se sugiere sumar y restar las ecuaciones).

Respuesta:

$$a = b =$$

- **28.** Usando alguna de las fórmulas que recordamos en el ejercicio 26 y el cambio de variables del ejercicio anterior halle una fórmula para ch(x) + ch(y).
- **29.** De manera similar deduzca una fórmula para sh(x) + sh(y).
- **30.** De manera similar halle una fórmula para ch(x) ch(y).