Definición de coseno y seno hiperbólico (ejercicios)

Objetivos. Definir las funciones coseno y seno hiperbólico a través de la función exponencial. Calcular las series de Taylor-Maclaurin de estas funciones. Investigar sus propiedades de paridad.

Requisitos. Definición de la función exponencial a través de una serie de potencias, fórmula para la derivada de la función exponencial, radio de convergencia de una serie de potencias.

Aplicaciones. Las funciones hiperbólicas tienen muchas aplicaciones. Por ejemplo, estas se pueden utilizar:

- para parametrizar la hipérbola;
- para resolver ecuaciones algebraicas de grados 2, 3, 4;
- para integrar algunas expresiones con raíces cuadradas;
- para simplificar algunas fórmulas en la teoría de la relatividad especial.

1. Definición de la función exponencial (repaso).

La función exponencial exp: $\mathbb{C} \to \mathbb{C}$ se define mediante la siguiente serie de potencias:

$$\exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}.$$

Se sabe que esta serie converge absolutamente para todo $z \in \mathbb{C}$. Por brevedad, en vez de $\exp(z)$ también se escribe e^z .

2. Definición (coseno hiperbólico). La función coseno hiperbólico se denota con el símbolo cosh o ch y se define de la siguiente manera:

$$\operatorname{ch} : \mathbb{C} \to \mathbb{C}, \qquad \operatorname{ch}(z) \coloneqq \frac{\exp(z) + \exp(-z)}{2}.$$

3. Definición (seno hiperbólico). La función *seno hiperbólico* se denota con el símbolo senh o sh y se define de la siguiente manera:

$$\mathrm{sh} \colon \mathbb{C} \to \mathbb{C}, \qquad \mathrm{sh}(z) \coloneqq \frac{\exp(z) - \exp(-z)}{2}.$$

4. Identidad fundamental para funciones hiperbólicas. Simplifique la expresión:

$$\mathrm{ch}^2(z) - \mathrm{sh}^2(z) =$$

Definición de coseno y seno hiperbólico (ejercicios), página 1 de 5

Paridad de las funciones ch y sh

- **5. Definición de funciones pares e impares.** En este tema sólo nos interesan funciones definidas en todo el plano complejo \mathbb{C} . Sea $f: \mathbb{C} \to \mathbb{C}$.
 - Se dice que f es par si $\forall z \in \mathbb{C}$ f(-z) =
 - Se dice que f es impar si
- **6. Paridad de ch y sh.** Simplifique la expresión ch(-z):

$$\operatorname{ch}(-z) = \frac{1}{2}$$

Simplifique la expresión sh(-z):

$$\operatorname{sh}(-z) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Resumen: ch es una función ; sh es una función par/impar ; sh es una función

7. Suma y resta de ch
 y sh. Simplifique las expresiones:

$$ch(z) + sh(z) =$$

$$\operatorname{ch}(z) - \operatorname{sh}(z) =$$

8. Descomposición de la función exponencial en la suma de una función par y una función impar. Es un hecho general que toda función $f: \mathbb{C} \to \mathbb{C}$ se puede escribir de manera única en la forma g+h, donde g es una función par y h es una función impar. Para la función exponencial esta descomposición es:

$$\exp = \underbrace{\qquad \qquad }_{\text{(una función par)}} + \underbrace{\qquad \qquad }_{\text{(una función impar)}}.$$

Definición de coseno y seno hiperbólico (ejercicios), página 2 de 5

Series de Taylor-Maclaurin para ch y sh

9. Definición de la función exponencial (repaso). La función exponencial exp: $\mathbb{C} \to \mathbb{C}$ se define mediante la siguiente serie de potencias:

$$\exp(z) \coloneqq \sum_{k=0}^{\infty} \underbrace{\hspace{1cm}}_{2}$$

10. Expanda $\exp(-z)$ en una serie de potencias:

11. Escriba en la forma explícita los primeros seis términos (hasta z^5) de las expansiones de $\exp(z)$ y $\exp(-z)$:

$$\exp(z) = + + \frac{z^2}{z^2} + \dots + \frac{z^5}{z^5} + \dots$$

$$\exp(-z) =$$

12. Primeros términos de las expansiones de ch y sh. Usando los resultados del ejercicio anterior escriba los primeros términos de las siguientes expansiones:

$$\exp(z) + \exp(-z) =$$

$$\exp(z) - \exp(-z) =$$

$$\cosh(z) =$$

$$\sinh(z) =$$

Definición de coseno y seno hiperbólico (ejercicios), página 3 de 5

Para escribir las expansiones de ch y sh en forma breve, vamos a repasar cómo escribir sumas sobre índices pares o sobre índices impares.

13. Suma sobre índices pares; sobre índices impares. Dados $a_0, a_1, a_2, a_3, \ldots$, vamos usar la siguiente notación:

$$\sum_{k \text{ par}} a_k = a_0 + a_2 + a_4 + \dots; \qquad \sum_{k \text{ impar}} a_k = a_1 + a_3 + a_5 + \dots$$

Se sabe que si una serie $\sum_{k=0}^{\infty} a_k$ converge absolutamente, entonces

$$\sum_{k=0}^{\infty} a_k = \sum_{k \text{ par}} a_k + \sum_{k \text{ impar}} a_k.$$

Si k recorre el conjunto $\{0,2,4,\ldots\}$ y realizamos el cambio de variable k=2j, entonces la variable nueva j recorre el conjunto $\{\underbrace{,,,\ldots}_{2}\}$, así que

$$\sum_{k \text{ par}} a_k = \sum_j a_j.$$

$$\sum_{k \text{ impar}} a_k =$$

14. Simplifique la expresión:

$$\frac{1+(-1)^k}{2} = \begin{cases} &, & \text{si } k \text{ es par;} \\ &, & \text{si } k \text{ es impar.} \end{cases}$$

15. Usando los resultados de los ejercicios anteriores deduzca las expansiones de ch y sh.

Derivadas de ch y sh

16. Derivada de la función exponencial (repaso). Se sabe que

 $\forall z \in \mathbb{C} \qquad \exp'(z) = \underbrace{\qquad}_?$

o sea

17. Calcule la derivada de la función $z \mapsto \exp(-z)$:

$$\left(\exp(-z)\right)' = \underbrace{\hspace{1cm}}_{2}.$$

18. Calcule las derivadas de ch y de sh:

$$ch'(z) = \left(\frac{1}{2}\right)' = \\ sh'(z) = \left(\frac{1}{2}\right)' = \\ \frac{1}{2}\left(\frac{1}{2}\right)' = \\$$

19. Calcule las segundas derivadas de ch y sh:

$$\operatorname{ch}'' = \underbrace{\hspace{1cm}}_{?}, \qquad \operatorname{sh}'' = \underbrace{\hspace{1cm}}_{?}$$

20. Calcule los valores de las funciones ch y sh y de sus primeras derivadas en el punto 0:

$$ch(0) = \underbrace{\hspace{1cm}}_{?}, \qquad ch'(0) = \underbrace{\hspace{1cm}}_{?}, \qquad ch''(0) = \underbrace{\hspace{1cm}}_{?};$$

$$sh(0) = \underbrace{\hspace{1cm}}_{?}, \qquad sh''(0) = \underbrace{\hspace{1cm}}_{?}, \qquad sh''(0) = \underbrace{\hspace{1cm}}_{?}.$$