Ecuaciones ch(z) = w y sh(z) = wcon variables complejas

(ejercicios)

Objetivos. Analizar ecuaciones ch(z) = w y sh(z) = w con una incógnita compleja z y un parámetro complejo w, expresar sus soluciones a través de la función ln.

Requisitos. Propiedades de las funciones ch y sh de una variable compleja; propiedades de la función exponencial; definición del logaritmo natural.

1. Definición del coseno y seno hiperbólico de un argumento complejo (repaso). En esta sección tratamos ch y sh como funciones de argumentos complejos:

$$\operatorname{ch} : \mathbb{C} \to \mathbb{C}, \qquad \operatorname{ch}(z) \coloneqq \frac{\exp(z) + }{2};$$

$$\operatorname{sh} \colon \mathbb{C} \to \mathbb{C}, \qquad \operatorname{sh}(z) \coloneqq \frac{\exp(z)}{2}.$$

Por brevedad vamos a escribir e^z en vez de $\exp(z)$.

2. Paridad. Recuerde las fórmulas:

$$\operatorname{ch}(-x) = \underbrace{\hspace{1cm}}_{2}, \qquad \operatorname{sh}(-x) = \underbrace{\hspace{1cm}}_{2}$$

Periodicidad de la función $\varphi \mapsto e^{i\varphi}$ (repaso)

Denotemos por \mathbb{T} a la circunferencia unitaria en el plano complejo:

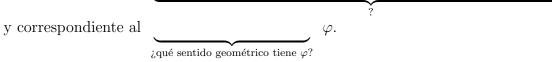
$$\mathbb{T} := \{ w \in \mathbb{C} \colon |w| = 1 \}.$$

3. Sentido geométrico del número $\exp(i\varphi)$.

Sea $\varphi \in \mathbb{R}$ y sea $t = e^{i\varphi}$. Entonces $|t| = \underbrace{\hspace{1cm}}_{?}$, esto es, $t \in \underbrace{\hspace{1cm}}_{?}$.

Por eso t se representa en el plano complejo

como un punto de la



4. Hecho 1: solución general de la ecuación $e^{i\varphi} = 1$.

Sea $\varphi \in \mathbb{R}$. Entonces

$$e^{i\varphi} = 1 \qquad \Longleftrightarrow \qquad \exists k \in \mathbb{Z}$$

En otras palabras,

5. Corolario: criterio de la igualdad $e^{i\alpha} = e^{i\beta}$. Sean $\alpha, \beta \in \mathbb{R}$. Entonces

$$e^{i\alpha} = e^{i\beta} \iff \exists k \in \mathbb{Z}$$

6. Hecho 2: la función $\varphi\mapsto e^{i\,\varphi},\ \mathbb{R}\to\mathbb{T}$ es suprayectiva.

Para todo $t \in \underbrace{\hspace{1cm}}_{?}$ existe un número $\varphi \in \underbrace{\hspace{1cm}}_{?}$ tal que $\underbrace{\hspace{1cm}}_{?}$

Para lo que sigue es importante elegir en \mathbb{R} un intervalo semiabierto de longitud 2π ; las opciones más naturales son $[0, 2\pi)$ y $(-\pi, \pi]$; en este texto vamos trabajar con $(-\pi, \pi]$.

7. Para todo
$$t \in \underbrace{\hspace{1cm}}_?$$
 existe un único $\varphi \in (-\pi, \pi]$ tal que $\underbrace{\hspace{1cm}}_? = t$.

Ecuaciones ch(z) = w y sh(z) = w con variables complejas, ejercicios, página 2 de 8

Argumento principal de un número complejo (repaso)

8. Valor absoluto de un número complejo (repaso). Sea $z = x + iy \in \mathbb{C} \setminus \{0\}$. Denotemos por |z| al valor absoluto (módulo) de z:

$$|z| \coloneqq \sqrt{}$$
.

9. Definición del argumento principal de un número complejo distinto de cero.

9. Definición del argumento principal de un número complejo distinto de cer
Sea
$$z \in \mathbb{C} \setminus \{0\}$$
. Pongamos $t := \frac{z}{|z|}$. Entonces $|t| = \underbrace{\hspace{1cm}}_{?}$.
Por eso existe un único número $\varphi \in (-\pi, \pi]$ tal que $\underbrace{\hspace{1cm}}_{?} = t$, o sea $\underbrace{\hspace{1cm}}_{?} = z$.

Este número φ se llama el argumento principal de z. Vamos a denotarlo por $\arg(z)$.

10. Sea
$$z \in \mathbb{C} \setminus \{0\}$$
. Entonces $|z| e^{i\varphi} = z$ \iff $\exists k \in \mathbb{Z} \quad \varphi = \arg(z) + \underline{\qquad}$.

En otras palabras, el conjunto de todos los argumentos de z se puede expresar a través del argumento principal de z de la siguiente manera:

$$\left\{ \varphi \in \mathbb{R} \colon \quad |z| e^{i\varphi} = z \right\} = \left\{ \arg(z) + \underbrace{\hspace{1cm}}_{?} \colon \quad k \in \mathbb{Z} \right\}.$$

11. Expresión del argumento principal a través de funciones trigonométricas inversas (ejercicio optativo).

Sea $z = x + i y \in \mathbb{C} \setminus \{0\}$ con $x, y \in \mathbb{R}$. Entonces

$$\operatorname{sen}(\operatorname{arg}(z)) = ---, \quad \operatorname{cos}(\operatorname{arg}(z)) = ---, \quad \operatorname{tg}(\operatorname{arg}(z)) = ---.$$

Tomando en cuenta los signos de x, y uno puede expresar arg(z) a través de las funciones arc sen, arc cos, arc tg y arcctg. Por ejemplo, si x < 0, y > 0, entonces $\arg(z)$ está en el siguiente intervalo:

$$arg(z) \in \left(, \right),$$

mientras que

$$\arcsin \frac{y}{|z|} \in \left(, \right), \quad \arccos \frac{x}{|z|} \in \left(, \right), \quad \arctan \frac{y}{x} \in \left(, \right).$$

De aquí se pueden deducir las siguientes fórmulas (para x < 0, y < 0):

$$\arg(z) = \underbrace{\qquad \qquad}_{\text{en t\'erminos de arc sen } \frac{y}{|z|}} = \underbrace{\qquad \qquad}_{\text{en t\'erminos de arc cos } \frac{x}{|z|}} = \underbrace{\qquad \qquad}_{\text{en t\'erminos de arc sen } \frac{y}{x}}.$$

Ecuaciones ch(z) = w y sh(z) = w con variables complejas, ejercicios, página 3 de 8

Logaritmo de un número complejo distinto de cero (repaso)

Aquí siempre vamos a hablar del logaritmo natural (en base e).

12. Logaritmo de un número positivo. La función $x\mapsto \mathrm{e}^x,\ \mathbb{R}\to (0,+\infty),$

es estrictamente $\underbrace{\hspace{1.5cm}}_{\text{ℓ creciente o decreciente?}}$ y por lo tanto $\underbrace{\hspace{1.5cm}}_{\text{ℓ inyectiva o suprayectiva?}}$.

Además,

$$\lim_{x \to +\infty} e^x = \underbrace{\lim_{x \to -\infty} e^x}_{2} = \underbrace{\underbrace{\lim_{x \to -\infty} e^x}_{2}}_{2}.$$

De la continuidad sigue que cuando x corre de $-\infty$ a $+\infty$,

 e^x toma todos los valores de $\underbrace{\qquad}_?$ a $\underbrace{\qquad}_?$.

De lo anterior sigue que esta función es biyectiva. Denotemos su inversa por ln₊. De esta definición obtenemos que

 \ln_+ : $\underset{?}{\underbrace{\hspace{1cm}}} \rightarrow \underset{?}{\underbrace{\hspace{1cm}}}$

y para todo r > 0

$$\exp(\ln_+(r)) = \underbrace{\hspace{1cm}}_{2}.$$

- 13. Muestre que $e^{\xi} \neq 0$ para todo $\xi \in \mathbb{C}$.
- 14. Sea $z \in \mathbb{C} \setminus \{0\}$ Para comprender mejor qué forma tiene la solución general de la ecuación $e^{\xi} = z$ recordamos que la función exponencial es periódica:

 $\forall \xi \in \mathbb{C} \qquad \forall k \in \mathbb{Z} \qquad e^{\xi + 2k\pi i} =$

Sea $z \in \mathbb{C} \setminus \{0\}$. Muestre que existe un único número $\xi \in \mathbb{C}$ tal que

$$e^{\xi} = z,$$
 y $Im(\xi) \in (-\pi, \pi].$

Vamos a decir que ξ es el valor principal del logaritmo de z y denotarlo por $\ln(z)$. Exprese ξ en términos de \ln_+ y arg.

16. Solución general de la ecuación $\exp(\xi) = z$.

Sea $z \in \mathbb{C} \setminus \{0\}$. Encuentre la solución general de la ecuación $e^{\xi} = z$.

Ecuaciones $\operatorname{ch}(z)=w$ y $\operatorname{sh}(z)=w$ con variables complejas, ejercicios, $\,$ página 5 de 8 $\,$

Raíces cuadradas de un número complejo (repaso)

17. Raíces cuadradas de un número complejo (repaso).

Se puede demostrar que para todo número complejo $d \in \mathbb{C} \setminus \{0\}$ existen exactamente dos números complejos cuyos cuadrados coinciden con d. Uno de estos números complejos tiene argumento en $[0,\pi)$, y lo denotamos por \sqrt{d} ; el otro tiene argumento en \sqrt{d} .

Por lo tanto, el conjunto solución de la ecuación compleja $c^2=d$ con $d\neq 0$ es

En el caso d=0 la ecuación $c^2=0$ tiene una única solución: c= ______,

la cual también se puede denotar por $\sqrt{0}$.

18. Raíces cuadradas a través de la forma polar (ejercicio optativo). Demuestre los enunciados del ejercicio anterior usando la forma polar de números complejos.

19. Solución de la ecuación cuadrática (repaso).

Sean $a, b \in \mathbb{C}$. Resuelva la ecuación $(t-a)^2 = b$ para la incógnita t.

Solución de la ecuación $\operatorname{ch}(z)=w$

20. Paridad y periodicidad de ch. Para comprender mejor la estructura del conjunto solución de esta ecuación recordemos que ch es una función par y periódica: para todos $z \in \mathbb{C}$ y $k \in \mathbb{Z}$

$$\operatorname{ch}(-z) =$$

$$\operatorname{ch}(z + 2k\pi i) =$$

21. Cambio de variable.

En la ecuación ch(z) = w haga el cambio de variable $t := e^z$ y encuentre t.

22. Solución. Usando el resultado del ejercicio anterior escriba la solución general de la ecuación ch(z) = w.

Ecuaciones $\operatorname{ch}(z)=w$ y $\operatorname{sh}(z)=w$ con variables complejas, ejercicios, $\,$ página 7 de 8

Solución de la ecuación $\operatorname{sh}(z)=w$

23. Paridad y periodicidad de sh. Para comprender mejor la estructura del conjunto solución de esta ecuación recordemos que sh es una función periódica: para todos $z \in \mathbb{C}$ y $k \in \mathbb{Z}$

$$\operatorname{ch}(z + 2k\pi i) =$$

24. Cambio de variable.

En la ecuación $\operatorname{sh}(z) = w$ haga el cambio de variable $t := e^z$ y encuentre t.

25. Solución. Usando el resultado del ejercicio anterior escriba la solución general de la ecuación sh(z) = w.

Ecuaciones $\operatorname{ch}(z)=w$ y $\operatorname{sh}(z)=w$ con variables complejas, ejercicios, $\,$ página 8 de 8