Las funciones representables por series de potencias son holomorfas

Objetivos. Demostrar que si una función se representa por una serie de potencias, entonces esta función es holomorfa.

Prerrequisitos. Series de potencias, el teorema de Weierstrass sobre la convergencia uniforme.

Lema 1.

$$\lim_{k \to \infty} \sqrt[k]{k} = 1.$$

Demostración. Para cada k en \mathbb{N} , definimos

$$\alpha_k := \sqrt[k]{k} - 1.$$

Para cada $k \geq 2$, por el teorema del binomio,

$$k = (1 + \alpha_k)^k \ge {k \choose 2} \alpha_k^2 = \frac{k(k-1)}{2} \alpha_k^2.$$

Por lo tanto,

$$0 \le \alpha_k \le \sqrt{\frac{2}{k-1}},$$

y concluimos que $\alpha_k \to 0$.

Observación 2. Se sabe que si $x_k \to A$, donde A > 0, entonces

$$\limsup_{k \to \infty} (x_k y_k) = A \limsup_{k \to \infty} y_k.$$

Lema 3. Sea $k \in \mathbb{N}$, $k \geq 2$. Definitions

$$h_k(w,z) := \frac{w^k - z^k}{w - z} - kz^{k-1}.$$

Entonces,

$$h_k(w,z) = (w-z) \sum_{j=1}^{k-1} j z^{j-1} w^{k-j-1}.$$
 (1)

 $Si |z| \le \rho y |w| \le \rho$, entonces

$$|h_k(w,z)| \le |w-z| \frac{k(k-1)}{2} \rho^{k-2}.$$
 (2)

Las funciones representables por series de potencias son holomorfas, página 1 de 3

Demostración. Por un lado,

$$h_k(w,z) = \sum_{m=0}^{k-1} w^{k-m-1} z^m - k z^{k-1} = \sum_{m=0}^{k-2} w^{k-m-1} z^m - (k-1) z^{k-1}.$$

Por otro lado,

$$(w-z)\sum_{j=1}^{k-1}jz^{j-1}w^{k-j-1} = \sum_{j=1}^{k-1}jz^{j-1}w^{k-j} - \sum_{j=1}^{k-1}jz^{j}w^{k-j-1}$$

$$= \sum_{m=0}^{k-2}(m+1)z^{m}w^{k-m-1} - \sum_{m=1}^{k-2}mz^{m}w^{k-m-1} - (k-1)z^{k-1}$$

$$= z^{0}w^{k-1} + \sum_{m=1}^{k-2}z^{m}w^{k-m-1} - (k-1)z^{k-1}$$

$$= \sum_{m=0}^{k-2}z^{m}w^{k-m-1} - (k-1)z^{k-1}.$$

Hemos demostrado (1). Ahora mostremos la cota superior:

$$|h_k(w,z)| \le |w-z| \sum_{j=1}^{k-1} j\rho^{k-2} = \frac{k(k-1)}{2} \rho^{k-2} |w-z|.$$

Proposición 4. Sea Ω un subconjunto abierto de \mathbb{C} , sea $f: \Omega \to \mathbb{C}$, sea $a \in \Omega$, sea r > 0 tal que $D(a,r) \subseteq \Omega$, y sea $(c_k)_{k \in \mathbb{N}_0} \in \mathbb{C}^n$ tal que

$$f(z) = \sum_{k=0}^{\infty} c_k (z-a)^k \qquad (z \in D(a,r)).$$
 (3)

Entonces, la función f es derivable en D(a,r), y para cada z en D(a,r),

$$f'(z) = \sum_{k=1}^{\infty} kc_k (z - a)^{k-1}.$$
 (4)

Demostración. Sea R > 0 tal que

$$\frac{1}{R} = \limsup_{k \to \infty} \sqrt[k]{|c_k|}.$$

Por el teorema de Cauchy–Hadamard sobre el radio de convergencia, la serie en el lado derecho de (3) diverge para |z - a| > R. Por lo tanto, $r \le R$.

Consideremos la serie

$$\sum_{k=0}^{\infty} k c_k (z-a)^k.$$

Las funciones representables por series de potencias son holomorfas, página 2 de 3

Su radio de convergencia es R, porque

$$\limsup_{k \to \infty} \sqrt[k]{k|c_k|} = \frac{1}{R}.$$

Concluimos que la serie en el lado derecho de (4) converge en D(a, r). Denotemos su suma por g:

$$g(z) := \sum_{k=1}^{\infty} kc_k(z-a)^{k-1} \qquad (z \in D(a,r)).$$

Sea $z \in D(a, r)$. Elegimos $\rho > 0$ tal que $|z-a| < \rho < r$. Para cada w en $D(z, \rho - |z-a|)$, consideremos la expresión

$$q(w,z) := \frac{f(w) - f(z)}{w - z} - g(z).$$

Por la descomposición de f y g en series,

$$q(w,z) = \sum_{k=1}^{\infty} c_k \left(\frac{(w-a)^k - (z-a)^k}{(w-a) - (z-a)} - k(z-a)^{k-1} \right) = \sum_{k=2}^{\infty} c_k h_k (w-a, z-a).$$

Notamos que $|z-a|<\rho$ y $|w-a|<|w-z|+|z-a|<\rho$. Luego,

$$|q(w,z)| \le |w-z| \sum_{k=2}^{\infty} |c_k| k^2 \rho^k.$$

Como $\rho < r$, la última serie converge. Concluimos que $q(w,z) \to 0$ cuando $w \to z$.

Definición 5. Sea Ω un subconjunto abierto de \mathbb{C} y sea $f: \Omega \to \mathbb{C}$. Se dice que f es representable por series de potencias en Ω si para cada a en Ω cada r > 0 tales que $D(a,r) \subseteq \Omega$, existe $c \in \mathbb{C}^{\mathbb{N}_0}$ tal que

$$f(z) = \sum_{k=0}^{\infty} c_k (z - a)^k \qquad (z \in D(a, r)).$$
 (5)

Teorema 6. Sea Ω un subconjunto abierto de \mathbb{C} y sea $f: \Omega \to \mathbb{C}$ tal que f es representable por series de potencias en Ω . Entonces, f es holomorfa y f' también es representable por series de potencias en Ω .

Corolario 7. En la notación anterior, si se cumple (5), entonces

$$c_k = \frac{f^{(k)}(a)}{k!}.$$

En particular, esto significa que la sucesión c se determina de manera única por f y a.

Las funciones representables por series de potencias son holomorfas, página 3 de 3