Convergencia absoluta de series de números complejos

Objetivos. Demostrar que si una serie de números complejos converge de manera absoluta, entonces esta serie converge.

Prerrequisitos. Completez del espacio métrico \mathbb{C} , criterio de Cauchy para la convergencia de sucesiones, definición de la convergencia de series.

Aplicaciones. Análisis de convergencia de series de potencias (en particular, la fórmula de Cauchy–Hadamard para el radio de convergencia).

Proposición 1. Sea $a \in \mathbb{C}^{\mathbb{N}_0}$ tal que

$$\sum_{k=0}^{\infty} |a_k| < +\infty.$$

Entonces, la serie $\sum_{k=0}^{\infty} a_k$ converge.

Demostración. Consideramos las sucesiones de las sumas parciales:

$$s_m := \sum_{k=0}^m a_k, \qquad t_m := \sum_{k=0}^m |a_k|.$$

Es fácil ver que si m, n en \mathbb{N}_0 y m < n, entonces

$$|s_n - s_m| = \left| \sum_{k=m+1}^n a_k \right| \le \sum_{k=m+1}^n |a_k| = t_n - t_m.$$

En general, para m, n en \mathbb{N}_0 , tenemos que

$$|s_n - s_m| \le |t_n - t_m|. \tag{1}$$

Como

$$\lim_{m \to \infty} t_m = \sum_{k=0}^{\infty} |a_k|,$$

la sucesión t es de Cauchy. Dado $\varepsilon > 0$, existe p en \mathbb{N}_0 tal que

$$\forall m, n \ge p \qquad |t_n - t_m| < \varepsilon.$$

Debido a (1),

$$\forall m, n > p \qquad |t_n - t_m| < \varepsilon.$$

Convergencia absoluta de series de números complejos, página 1 de 1