Estimación de Cauchy para los coeficientes de una serie de potencias convergente

Objetivos. Dada una serie de potencias convergente, acotar el valor absoluto de su coeficiente en términos del valor máximo de la suma de la serie en una circunferencia.

Prerrequisitos. Series de potencias, fórmula de Cauchy–Hadamard, convergencia uniforme de una serie de potencias.

Lema 1. Sea $p \in \mathbb{Z}$. Entonces,

$$\frac{1}{2\pi} \int_{[0,2\pi]} \exp(p i t) dt = \delta_{p,0}.$$

Demostración. Para $p \neq 0$, consideremos la función

$$g(t) \coloneqq \frac{1}{p i} \exp(p i t).$$

Su derivada es $t \mapsto \exp(p i t)$. Por lo tanto,

$$\int_{[0,2\pi]} \exp(p \, \mathrm{i} \, t) \, \mathrm{d}t = g(2\pi) - g(0) = 0.$$

Proposición 2. Supongamos que $a \in \mathbb{C}$, $c \in \mathbb{C}^{\mathbb{N}_0}$, y la serie de potencias

$$\sum_{k=0}^{\infty} c_k (z-a)^k$$

tiene radio de convergencia R > 0. Denotemos por f su suma:

$$f(z) := \sum_{k=0}^{\infty} c_k (z - a)^k \qquad (|z - a| < R).$$

Sea r > 0 tal que r < R. Entonces, para cada k en \mathbb{N}_0 ,

$$c_k = \frac{1}{2\pi} \int_{[0,2\pi]} \frac{f(a + \exp(it)) dt}{\exp(k it)}.$$
 (1)

Demostración. Sabemos que la serie converge de manera uniforme en la circunferencia

$$a + r\mathbb{T}$$
.

Estimación de Cauchy para los coeficientes de una serie de potencias, página 1 de 2

Suponiendo que |z-a|=r, dividimos la serie sobre $2\pi(z-a)^m$:

$$\frac{1}{2\pi} \frac{f(z)}{(z-a)^m} = \frac{1}{2\pi} \lim_{m \to \infty} \sum_{k=0}^m c_k (z-a)^{k-m}.$$

Hacemos la sustitución $z = a + \exp(it)$ e integramos sobre $[0, 2\pi]$:

$$\frac{1}{2\pi} \int_{[0,2\pi]} \frac{f(a + \exp(i t))}{\exp(m i t)} dt = \lim_{m \to \infty} \sum_{k=0}^{m} c_k \frac{1}{2\pi} \int_{[0,2\pi]} \exp((k - m) i t) dt$$

$$= \lim_{m \to \infty} \sum_{k=0}^{m} c_k \delta_{k-m,0} = c_m. \qquad \square$$

Proposición 3. Supongamos que $a \in \mathbb{C}$, $c \in \mathbb{C}^{\mathbb{N}_0}$, y la serie de potencias

$$\sum_{k=0}^{\infty} c_k (z-a)^k$$

tiene radio de convergencia R > 0. Denotemos por f su suma:

$$f(z) := \sum_{k=0}^{\infty} c_k (z - a)^k \qquad (|z - a| < R).$$

 $Sea \ r > 0 \ tal \ que \ r < R \ y \ sea$

$$M \coloneqq \sup_{|z-a|=r} |f(z)|.$$

Entonces, para cada k en \mathbb{N}_0 ,

$$|c_k| \le \frac{M}{r^k}.$$

Demostración. La integral en (1) se acota por $2\pi M$:

$$\left| \int_{[0,2\pi]} \frac{f(a + \exp(\mathrm{i}\,t))\,\mathrm{d}t}{\exp(k\,\mathrm{i}\,t)} \right| \le \int_{[0,2\pi]} \left| \frac{f(a + \exp(\mathrm{i}\,t))}{\exp(k\,\mathrm{i}\,t)} \right| \,\mathrm{d}t \le 2\pi M. \quad \Box$$