Convergencia uniforme

Este tema usa las nociones de desviación suprema y norma-supremo. Sean X, Y espacios métricos.

Definición (convergencia uniforme de una sucesión de funciones). Sean $\{f_n\}$ una sucesión de funciones $X \to Y$, g una función $X \to Y$. Se dice que f_n converge uniformemente a g si

$$\lim_{n\to\infty} \rho(f_n,g) = 0.$$

1. Formular la definición anterior en el lenguaje de ε y δ . Comparar con la definición de convergencia puntual.

A veces se considera la convergencia uniforme en un subconjunto del dominio de definición:

Definición (convergencia uniforme de una sucesión de funciones en un conjunto). Sean $\{f_n\}$ una sucesión de funciones $X \to Y$, g una función $X \to Y$, $X_1 \subset X$. Se dice que f_n converge uniformemente a g en el conjunto X_1 si la sucesión de restricciones $f_n|_X$ converge uniformemente a la restricción $g|_X$. En otras palabras, si

$$\lim_{n\to\infty}\sup_{x\in X_1}d(f(x),g(x))=0.$$

2. Relación entre la convergencia uniforme y la convergencia puntual. Mostrar que la convergencia uniforme implica la convergencia puntual:

si
$$f \stackrel{X}{\Rightarrow} g$$
, entonces $f \stackrel{X}{\longrightarrow} g$.

- 3. Criterio de Cauchy de la convergencia uniforme. Sean X un espacio métrico, Y un espacio métrico completo y $\{f_n\}$ una sucesión de funciones $X \to Y$. Entonces las siguientes condiciones son equivalentes:
 - (a) f_n converge uniformemente en X a una función $g\colon X\to Y;$
 - (b) $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall m, n \ge N \quad ||f_n g||_{\infty} \le \varepsilon.$

En otras palabras, el conjunto Y^X con la métrica ρ es un espacio métrico completo.

4. Teorema de Dini. Sea X un espacio métrico compacto, $f_n \in C(X, \mathbb{R})$, $g \in C(X, \mathbb{R})$. Supóngase que para todo $x \in X$ la sucesión $f_n(x)$ es monótona y para todo $x \in X$ se tiene $f_n(x) \to g(x)$ cuando $n \to \infty$. Entonces $f_n \stackrel{X}{\Rightarrow} g$.

Esquema de investigación. Para considerar los siguientes ejemplos, se puede usar el siguiente esquema:

• calcular la función límite $g(x) := \lim_{n \to \infty} f_n(x)$;

- calcular la norma $||f_n g||$;
- checar si $||f_n g|| \to 0$ cuando $n \to \infty$.

A veces es suficiente obtener una estimación superior de $||f_n - g||$ (para demostrar que $||f_n - g|| \to 0$) o una estimación inferior (para demostar que $||f_n - g|| \neq 0$).

Tarea: Para las siguientes sucesiones de funciones calcular la función límite y checar si tiene lugar la convergencia uniforme (usar la desviación suprema).

5. $f_n: [0,1] \to \mathbb{R}$ es la la función lineal a trozos cuya gráfica une los puntos (0,0), (1/n,1), (2/n,0), (1,0).

6.
$$f_n: [0,1] \to \mathbb{R}, \quad f_n(x) = x - x^n.$$

7.
$$f_n: [0,1] \to \mathbb{R}, \quad f_n(x) = x^n.$$

8.
$$f_n: [0, \frac{1}{2}] \to \mathbb{R}, \quad f_n(x) = x^n.$$

9.
$$f_n \colon \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{\sin n^2 x}{n}.$$

10.
$$f_n \colon \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{\sin nx}{n}.$$

11.
$$f_n \colon \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \sin \frac{x}{n}.$$

12.
$$f_n: [0, +\infty) \to \mathbb{R}, \quad f_n(x) = \frac{x}{x+n}.$$

13.
$$f_n : [0,1] \to \mathbb{R}, \quad f_n(x) = x^n - x^{n+1}.$$

14.
$$f_n: (0, +\infty) \to \mathbb{R}, \quad f_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right).$$

15.
$$f_n: (0, +\infty) \to \mathbb{R}, \quad f_n(x) = \frac{1}{x+n}.$$

16.
$$f_n : [0,1] \to \mathbb{R}, \quad f_n(x) = \frac{nx}{1+n+x}.$$

17.
$$f_n \colon [0,1] \to \mathbb{R}, \quad f_n(x) = \frac{2nx}{1 + n^2 x^2}.$$

18.
$$f_n: (1, +\infty) \to \mathbb{R}, \quad f_n(x) = \frac{2nx}{1 + n^2x^2}.$$

19.
$$f_n: \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}.$$

20.
$$f_n: (0, +\infty) \to \mathbb{R}, \quad f_n(x) = \operatorname{arctg} nx.$$

21.
$$f_n: (0, +\infty) \to \mathbb{R}, \quad f_n(x) = x \operatorname{arctg} nx.$$

(Este ejemplo es un poco más complicado que los demás.)

22.
$$f_n: [0,2] \to \mathbb{R}, \quad f_n(x) = \sqrt[n]{1+x^n}.$$