Análisis Matemático IV, Licenciatura en Física y Matemáticas. Tarea 4. Tema: Espacios con producto interno. Variante α .

Formas sesquilineales, espacios con producto interno, identidad de paralelogramo, desigualdad de Schwarz, proyección ortogonal sobre un subespacio de dimensión finita, ortogonalización de Gram y Schwidt, matriz de Gram..

Nombre: Calificación (%):

Las tareas se califican de manera muy cruel. Es obligatorio escribir los cálculos en las comprobaciones.

Ejercicio 1. 5%.

Sea V un espacio vectorial real con producto interno y sean $a_1, a_2, a_3 \in V$. Calcule la matriz de Gram $G(a_1, a_2, a_3)$, si están dadas las siguientes normas:

$$\begin{split} \|\alpha_1 + \alpha_2\|^2 &= 84, & \|\alpha_1 + \alpha_3\|^2 &= 65, & \|\alpha_2 + \alpha_3\|^2 &= 101, \\ \|\alpha_1 - \alpha_2\|^2 &= 8, & \|\alpha_1 - \alpha_3\|^2 &= 49, & \|\alpha_2 - \alpha_3\|^2 &= 21. \end{split}$$

Ejercicio 2. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} 3 \\ 5 \\ -1 \\ -1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -3 \\ 3 \\ 5 \\ 1 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 2 \\ -1 \\ 2 \\ -1 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ -5 \\ 12 \\ -1 \end{bmatrix}.$$

- I. Muestre que los vectores a_1 , a_2 , a_3 son ortogonales a pares y calcule sus normas.
- II. Usando el producto interno encuentre coeficientes $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tales que

$$b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$$
.

- III. Haga la comprobación de la igualdad $b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$.
- IV. Haga la comprobación de la identidad de Pitágoras-Parseval:

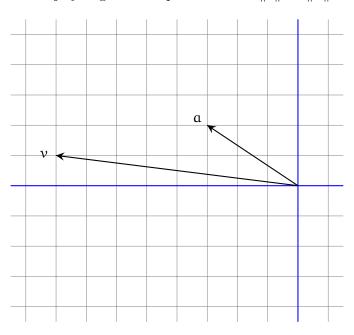
$$||b||^2 = |\lambda_1|^2 ||a_1||^2 + |\lambda_2|^2 ||a_2||^2 + |\lambda_3|^2 ||a_3||^2.$$

Ejercicio 3. 5%.

En el plano castesiano \mathbb{R}^2 están dados dos vectores \mathfrak{a} y \mathfrak{v} .

I. Halle dos vectores $u, w \in \mathbb{R}^2$ tales que $u \in \ell(\mathfrak{a}), w \perp \mathfrak{a} \quad y \quad v = u + w.$

II. Muestre u y w en el dibujo y haga las comprobaciones: $\|v\|^2 = \|u\|^2 + \|w\|^2$, $w \perp a$.



Ejercicio 4. 5%.

En el espacio $V = \mathbb{R}^3$ con el producto interno usual consideramos dos vectores:

$$a = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 5 \\ -9 \end{bmatrix}.$$

Muestre que $\langle a,b \rangle \neq 0$. Encuentre λ en $\mathbb R$ tal que

$$\|\lambda a + b\| < \|b\|.$$

Ejercicio 5. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$\alpha_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \\ 1 \end{bmatrix}, \qquad \alpha_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \\ 3 \end{bmatrix}, \qquad \nu = \begin{bmatrix} 2 \\ 10 \\ 4 \\ -5 \end{bmatrix}.$$

- I. Muestre que $a_1 \perp a_2$ y calcule las normas $||a_1|| y ||a_2||$.
- II. Halle dos vectores $u \in S$ y $w \in S^{\perp}$ tales que v = u + w, donde S es el subespacio generado por \mathfrak{a}_1 y \mathfrak{a}_2 .
- III. Haga las comprobaciones: $\|\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{w}\|^2$, $\mathbf{w} \perp \mathbf{a}_1$, $\mathbf{w} \perp \mathbf{a}_2$.

Ejercicio 6. 5%.

Está dado un vector $a \in \mathbb{R}^3$:

$$a = \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix}.$$

Calcule la matriz de proyección ortogonal P_{α} y la matriz de reflexión ortogonal H_{α} . Verifique que las matrices P_{α} y H_{α} son simétricas y calcule directamente las siguientes expresiones:

$$P_{\alpha}a$$
, P_{α}^2 , $H_{\alpha}a$, H_{α}^2 .

Ejercicio 7. 5%.

Está dado un vector $v \in \mathbb{R}^2$:

$$v = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector ν . En otras palabras, calcule un vector $\alpha \in \mathbb{R}^2$ tal que $H_\alpha \nu = \|\nu\| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_α . Compruebe que $H_\alpha^2 = I_2$ y $H_\alpha \nu = \|\nu\| e_1$.

Ejercicio 8. 5%.

Está dado un vector $v \in \mathbb{R}^3$:

$$v = \begin{bmatrix} 3 \\ -2 \\ -6 \end{bmatrix}.$$

Encuentre la **reflexión de Householder** que corresponde al vector v. En otras palabras, calcule un vector $a \in \mathbb{R}^3$ tal que $H_a v = ||v|| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_a . Compruebe que $H_a^2 = I_3$ y $H_a v = ||v|| e_1$.

Ejercicio 9. 5%.

Sean $a_1, a_2, a_3, b_1, b_2, b_3$ algunos vectores del espacio \mathbb{R}^5 tales que

$$b_1 = \frac{a_1}{3}, \qquad b_2 = \frac{a_2 + 4b_1}{8}, \qquad b_3 = \frac{a_3 - 6b_1 - 9b_2}{2}.$$

- I. Escriba cada uno de los vectores a_1 , a_2 , a_3 como una combinación lineal de los vectores b_1 , b_2 , b_3 .
- II. Encuentre una matriz R tal que A = BR, donde A es la matriz formada de las columnas a_1, a_2, a_3, y B es la matriz formada de las columnas b_1, b_2, b_3 .

Ejercicio 10. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} 5 \\ 1 \\ 2 \\ 4 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -6 \\ 4 \\ -6 \\ -2 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} -22 \\ -8 \\ -1 \\ -16 \end{bmatrix}.$$

Ejercicio 11. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -3 \\ 1 \\ -5 \\ 4 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -2 \\ 2 \\ -7 \\ 2 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} -10 \\ 2 \\ -13 \\ 14 \end{bmatrix}.$$

Ejercicio 12. 8%.

Construya una factorización QR de la matriz dada A usando el **algoritmo de Gram–Schmidt**. Haga las comprobaciones: $Q^{T}Q = I_3$, QR = A.

$$A = \begin{bmatrix} -2 & -3 & 1 \\ 1 & 1 & 6 \\ 4 & -8 & 19 \\ 2 & 0 & 10 \end{bmatrix}.$$

Ejercicio 13. 10%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los polinomios $1, x, x^2, x^3$ en el espacio de los polinomios $\mathcal{P}(\mathbb{R})$ con producto interno

$$\langle f, g \rangle := \int_{0}^{1} f(x)g(x) dx.$$

Calcule la matriz de Gram de los polinomios b_0 , b_1 , b_2 , b_3 obtenidos en este proceso. Para calcular las integrales puede usar la siguiente tabla:

р	0	1	2	3	4	5	6	
$I_{\mathfrak{p}}$	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	

donde
$$I_p := \int_0^1 x^p dx$$
.

Ejercicio 14. 5%.

I. En este ejercicio demostramos el teorema de Pitágoras y un poco más. Sea H un espacio vectorial real con producto interno y sean $a, b \in H$. Demuestre que

$$a \perp b \iff \|a + b\|^2 = \|a\|^2 + \|b\|^2.$$

II. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

III. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} no sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

Ejercicio 15. 5%.

I. Sea H un espacio vectorial complejo con producto interno. Demuestre que la norma inducida por el producto interno satisface la identidad de paralelogramo.

II. Demuestre que en el espacio ℓ^1 no existe ningún producto interno que induzca la norma de este espacio.

Ejercicio 16. 5%.

Están dados dos vectores en \mathbb{R}^2 :

$$a = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ 1 \end{bmatrix}.$$

Denotemos por m al vector $\frac{1}{2}(a+b)$.

I. Calcule $\mathfrak m$ de manera explícita, luego calcule $\|\mathfrak m\|.$

II. Calcule $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$, $\|\mathfrak{a}-\mathfrak{b}\|$. Calcule $\|\mathfrak{m}\|$ usando el teorema de Apolonio.

Tarea 4. Tema: Espacios con producto interno, variante α , página 5 de 6

Ejercicio 17. 5%.

Criterio de igualdad en la desigualdad de Schwarz, demostración. Sea H un espacio vectorial complejo con producto interno y sean $a, b \in H$. Supongamos que $a \neq 0_H$ y que

$$|\langle a, b \rangle| = ||a|| \, ||b||.$$

Pongamos

$$\lambda \coloneqq \frac{\langle b, a \rangle}{\|a\|^2}, \qquad \mathfrak{u} \coloneqq \lambda a, \qquad \mathfrak{w} \coloneqq b - \mathfrak{u}.$$

- I. Demuestre que $w \perp a$. Demuestre que $u \perp w$.
- II. Usando la suposición (la "igualdad de Schwarz") exprese λ y $\|u\|$ en términos de $\|a\|$ y $\|b\|$.
- III. Aplique el teorema de Pitágoras a los vectores u, w, b.
- IV. Muestre que b es un múltiplo de a.

Ejercicio 18. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} 6 \\ -3 \\ 15 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ -2 \\ 10 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y b. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y b son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a, b \rangle| = ||a|| ||b||.$$

Ejercicio 19. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}, \qquad b = \begin{bmatrix} 2 \\ -2 \\ -1 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y b. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y b son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a,b\rangle| = ||a|| ||b||.$$

Análisis Matemático IV, Licenciatura en Física y Matemáticas. Tarea 4. Tema: Espacios con producto interno. Variante β.

Formas sesquilineales, espacios con producto interno, identidad de paralelogramo, desigualdad de Schwarz, proyección ortogonal sobre un subespacio de dimensión finita, ortogonalización de Gram y Schwidt, matriz de Gram..

Nombre: Calificación (%):

Las tareas se califican de manera muy cruel. Es obligatorio escribir los cálculos en las comprobaciones.

Ejercicio 1. 5%.

Sea V un espacio vectorial real con producto interno y sean $a_1, a_2, a_3 \in V$. Calcule la matriz de Gram $G(a_1, a_2, a_3)$, si están dadas las siguientes normas:

$$\|a_1 + a_2\|^2 = 41,$$
 $\|a_1 + a_3\|^2 = 5,$ $\|a_2 + a_3\|^2 = 38,$ $\|a_1 - a_2\|^2 = 25,$ $\|a_1 - a_3\|^2 = 9,$ $\|a_2 - a_3\|^2 = 38.$

Ejercicio 2. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} -3 \\ 2 \\ 1 \\ -2 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 3 \\ 2 \\ -3 \\ -4 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 3 \\ -6 \\ -7 \\ -5 \end{bmatrix}.$$

- I. Muestre que los vectores a_1 , a_2 , a_3 son ortogonales a pares y calcule sus normas.
- II. Usando el producto interno encuentre coeficientes $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tales que

$$b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3.$$

- III. Haga la comprobación de la igualdad $b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$.
- IV. Haga la comprobación de la identidad de Pitágoras-Parseval:

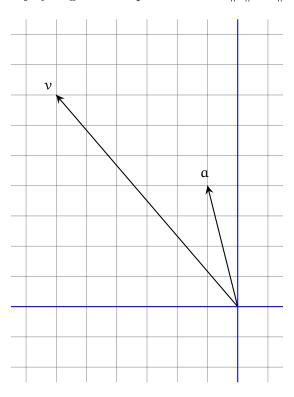
$$||b||^2 = |\lambda_1|^2 ||a_1||^2 + |\lambda_2|^2 ||a_2||^2 + |\lambda_3|^2 ||a_3||^2.$$

Ejercicio 3. 5%.

En el plano castesiano \mathbb{R}^2 están dados dos vectores \mathfrak{a} y \mathfrak{v} .

I. Halle dos vectores $u, w \in \mathbb{R}^2$ tales que $u \in \ell(a), w \perp a$ y v = u + w.

II. Muestre u y w en el dibujo y haga las comprobaciones: $\|v\|^2 = \|u\|^2 + \|w\|^2$, $w \perp a$.



Ejercicio 4. 5%.

En el espacio $V = \mathbb{R}^3$ con el producto interno usual consideramos dos vectores:

$$a = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 22 \\ 20 \end{bmatrix}.$$

Muestre que $\langle a,b\rangle \neq 0.$ Encuentre λ en $\mathbb R$ tal que

$$\|\lambda a + b\| < \|b\|.$$

Tarea 4. Tema: Espacios con producto interno, variante β, página 2 de 6

Ejercicio 5. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} -5 \\ 1 \\ 4 \\ -1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \qquad \nu = \begin{bmatrix} -3 \\ 4 \\ 8 \\ 8 \end{bmatrix}.$$

- I. Muestre que $a_1 \perp a_2$ y calcule las normas $||a_1|| y ||a_2||$.
- II. Halle dos vectores $u \in S$ y $w \in S^{\perp}$ tales que v = u + w, donde S es el subespacio generado por \mathfrak{a}_1 y \mathfrak{a}_2 .
- III. Haga las comprobaciones: $\|v\|^2 = \|u\|^2 + \|w\|^2$, $w \perp a_1$, $w \perp a_2$.

Ejercicio 6. 5%.

Está dado un vector $a \in \mathbb{R}^3$:

$$a = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}.$$

Calcule la matriz de proyección ortogonal P_{α} y la matriz de reflexión ortogonal H_{α} . Verifique que las matrices P_{α} y H_{α} son simétricas y calcule directamente las siguientes expresiones:

$$P_{\alpha}a$$
, P_{α}^2 , $H_{\alpha}a$, H_{α}^2 .

Ejercicio 7. 5%.

Está dado un vector $v \in \mathbb{R}^2$:

$$v = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector ν . En otras palabras, calcule un vector $\alpha \in \mathbb{R}^2$ tal que $H_\alpha \nu = \|\nu\| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_α . Compruebe que $H_\alpha^2 = I_2$ y $H_\alpha \nu = \|\nu\| e_1$.

Ejercicio 8. 5%.

Está dado un vector $v \in \mathbb{R}^3$:

$$v = \begin{bmatrix} -6 \\ 2 \\ 3 \end{bmatrix}.$$

Encuentre la **reflexión de Householder** que corresponde al vector v. En otras palabras, calcule un vector $a \in \mathbb{R}^3$ tal que $H_a v = ||v|| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_a . Compruebe que $H_a^2 = I_3$ y $H_a v = ||v|| e_1$.

Ejercicio 9. 5%.

Sean $a_1, a_2, a_3, b_1, b_2, b_3$ algunos vectores del espacio \mathbb{R}^5 tales que

$$b_1 = \frac{a_1}{8}$$
, $b_2 = \frac{a_2 - 3b_1}{2}$, $b_3 = \frac{a_3 + 9b_1 - 9b_2}{5}$.

- I. Escriba cada uno de los vectores a_1 , a_2 , a_3 como una combinación lineal de los vectores b_1 , b_2 , b_3 .
- II. Encuentre una matriz R tal que A = BR, donde A es la matriz formada de las columnas a_1, a_2, a_3, y B es la matriz formada de las columnas b_1, b_2, b_3 .

Ejercicio 10. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -1 \\ 1 \\ -4 \\ 2 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 6 \\ -6 \\ 2 \\ -1 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} -28 \\ 18 \\ -3 \\ 4 \end{bmatrix}.$$

Ejercicio 11. 6%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -1 \\ 4 \\ 2 \\ -2 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -5 \\ -3 \\ -6 \\ 3 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 21 \\ 8 \\ 22 \\ -10 \end{bmatrix}.$$

Ejercicio 12. 8%.

Construya una factorización QR de la matriz dada A usando el **algoritmo de Gram–Schmidt**. Haga las comprobaciones: $Q^{T}Q = I_3$, QR = A.

$$A = \begin{bmatrix} -4 & -3 & 2 \\ -2 & 0 & 2 \\ 2 & 4 & 9 \\ 1 & 5 & 19 \end{bmatrix}.$$

Ejercicio 13. 10%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los polinomios $1, x, x^2, x^3$ en el espacio de los polinomios $\mathcal{P}(\mathbb{R})$ con producto interno

$$\langle f, g \rangle := \int_{0}^{1} f(x)g(x) (1 - x^2) dx.$$

Calcule la matriz de Gram de los polinomios b_0 , b_1 , b_2 , b_3 obtenidos en este proceso. Para calcular las integrales puede usar la siguiente tabla:

р	0	1	2	3	4	5	6	
I_p	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{2}{15}$	$\frac{1}{12}$	$\frac{2}{35}$	$\frac{1}{24}$	$\frac{2}{63}$	do

donde
$$I_p := \int_0^1 x^p (1 - x^2) dx$$
.

Ejercicio 14. 5%.

I. En este ejercicio demostramos el teorema de Pitágoras y un poco más. Sea H un espacio vectorial real con producto interno y sean $a, b \in H$. Demuestre que

$$a \perp b \iff \|a + b\|^2 = \|a\|^2 + \|b\|^2.$$

- II. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a}+\mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a}+\mathfrak{b}\|^2 \|\mathfrak{a}\|^2 \|\mathfrak{b}\|^2$.
- III. Construya en \mathbb{R}^3 dos vectores a, b con componentes enteras no nulas, de tal manera que a y b no sean ortogonales. Calcule su producto interno. Calcule las normas $\|a + b\|$, $\|a\|$, $\|b\|$ y la expresión $\|a + b\|^2 \|a\|^2 \|b\|^2$.

Ejercicio 15. 5%.

- I. Sea H un espacio vectorial complejo con producto interno. Demuestre que la norma inducida por el producto interno satisface la identidad de paralelogramo.
- II. Demuestre que en el espacio BV([0,1]) no existe ningún producto interno que induzca la norma de este espacio.

Ejercicio 16. 5%.

Están dados dos vectores en \mathbb{R}^2 :

$$a = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \qquad b = \begin{bmatrix} 7 \\ -6 \end{bmatrix}.$$

Denotemos por m al vector $\frac{1}{2}(a+b)$.

- I. Calcule \mathfrak{m} de manera explícita, luego calcule $\|\mathfrak{m}\|$.
- II. Calcule $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$, $\|\mathfrak{a}-\mathfrak{b}\|$. Calcule $\|\mathfrak{m}\|$ usando el teorema de Apolonio.

Tarea 4. Tema: Espacios con producto interno, variante β , página 5 de 6

Ejercicio 17. 5%.

Criterio de igualdad en la desigualdad de Schwarz, demostración. Sea H un espacio vectorial complejo con producto interno y sean $a, b \in H$. Supongamos que $a \neq 0_H$ y que

$$|\langle a, b \rangle| = ||a|| \, ||b||.$$

Pongamos

$$\lambda \coloneqq \frac{\langle b, a \rangle}{\|a\|^2}, \qquad \mathfrak{u} \coloneqq \lambda a, \qquad w \coloneqq b - \mathfrak{u}.$$

- I. Demuestre que $w \perp a$. Demuestre que $u \perp w$.
- II. Usando la suposición (la "igualdad de Schwarz") exprese λ y $\|u\|$ en términos de $\|a\|$ y $\|b\|$.
- III. Aplique el teorema de Pitágoras a los vectores u, w, b.
- IV. Muestre que b es un múltiplo de a.

Ejercicio 18. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$b = \begin{bmatrix} -6 \\ 10 \\ -2 \end{bmatrix}, \qquad a = \begin{bmatrix} 3 \\ -5 \\ 1 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y $\mathfrak b$. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y $\mathfrak b$ son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a, b \rangle| = ||a|| ||b||.$$

Ejercicio 19. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$b = \begin{bmatrix} -6 \\ 1 \\ 2 \end{bmatrix}, \qquad a = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y b. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y b son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a,b\rangle| = ||a|| ||b||.$$

Análisis Matemático IV, Licenciatura en Física y Matemáticas. Tarea 4. Tema: Espacios con producto interno. Variante 0.

Formas sesquilineales, espacios con producto interno, identidad de paralelogramo, desigualdad de Schwarz, proyección ortogonal sobre un subespacio de dimensión finita, ortogonalización de Gram y Schwidt, matriz de Gram..

Nombre: Calificación (%):

Las tareas se califican de manera muy cruel. Es obligatorio escribir los cálculos en las comprobaciones.

Ejercicio 1. 5%.

Sea V un espacio vectorial real con producto interno y sean $a_1, a_2, a_3 \in V$. Calcule la matriz de Gram $G(a_1, a_2, a_3)$, si están dadas las siguientes normas:

$$\|a_1 + a_2\|^2 = 24,$$
 $\|a_1 + a_3\|^2 = 25,$ $\|a_2 + a_3\|^2 = 69,$ $\|a_1 - a_2\|^2 = 36,$ $\|a_1 - a_3\|^2 = 33,$ $\|a_2 - a_3\|^2 = 29.$

Ejercicio 2. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} -3 \\ 4 \\ -4 \\ 3 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 2 \\ -1 \\ -1 \\ 2 \end{bmatrix}, \qquad b = \begin{bmatrix} -4 \\ -3 \\ 5 \\ -10 \end{bmatrix}.$$

- I. Muestre que los vectores a_1 , a_2 , a_3 son ortogonales a pares y calcule sus normas.
- II. Usando el producto interno encuentre coeficientes $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que

$$b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$$
.

- III. Haga la comprobación de la igualdad $b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$.
- IV. Haga la comprobación de la identidad de Pitágoras-Parseval:

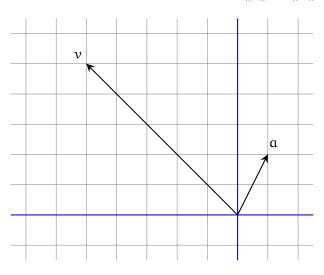
$$||b||^2 = |\lambda_1|^2 ||a_1||^2 + |\lambda_2|^2 ||a_2||^2 + |\lambda_3|^2 ||a_3||^2.$$

Ejercicio 3. 5%.

En el plano castesiano \mathbb{R}^2 están dados dos vectores \mathfrak{a} y \mathfrak{v} .

I. Halle dos vectores $u, w \in \mathbb{R}^2$ tales que $u \in \ell(a), w \perp a$ y v = u + w.

II. Muestre u y w en el dibujo y haga las comprobaciones: $\|v\|^2 = \|u\|^2 + \|w\|^2$, $w \perp a$.



Ejercicio 4. 5%.

En el espacio $V = \mathbb{R}^3$ con el producto interno usual consideramos dos vectores:

$$a = \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ -3 \\ 14 \end{bmatrix}.$$

Muestre que $\langle a, b \rangle \neq 0$. Encuentre λ en \mathbb{R} tal que

$$\|\lambda a + b\| < \|b\|.$$

Ejercicio 5. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$\alpha_1 = \begin{bmatrix} -4 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \qquad \alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \qquad \nu = \begin{bmatrix} 1 \\ -3 \\ 9 \\ 5 \end{bmatrix}.$$

- I. Muestre que $a_1 \perp a_2$ y calcule las normas $||a_1|| y ||a_2||$.
- II. Halle dos vectores $u \in S$ y $w \in S^{\perp}$ tales que v = u + w, donde S es el subespacio generado por \mathfrak{a}_1 y \mathfrak{a}_2 .
- III. Haga las comprobaciones: $\|\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{w}\|^2$, $\mathbf{w} \perp \mathbf{a}_1$, $\mathbf{w} \perp \mathbf{a}_2$.

Ejercicio 6. 5%.

Está dado un vector $a \in \mathbb{R}^3$:

$$a = \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}.$$

Calcule la matriz de proyección ortogonal P_{α} y la matriz de reflexión ortogonal H_{α} . Verifique que las matrices P_{α} y H_{α} son simétricas y calcule directamente las siguientes expresiones:

$$P_{\alpha}a$$
, P_{α}^2 , $H_{\alpha}a$, H_{α}^2 .

Ejercicio 7. 5%.

Está dado un vector $v \in \mathbb{R}^2$:

$$v = \begin{bmatrix} 12 \\ 5 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector ν . En otras palabras, calcule un vector $\alpha \in \mathbb{R}^2$ tal que $H_\alpha \nu = \|\nu\| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_α . Compruebe que $H_\alpha^2 = I_2$ y $H_\alpha \nu = \|\nu\| e_1$.

Ejercicio 8. 5%.

Está dado un vector $v \in \mathbb{R}^3$:

$$v = \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}.$$

Encuentre la **reflexión de Householder** que corresponde al vector v. En otras palabras, calcule un vector $a \in \mathbb{R}^3$ tal que $H_a v = ||v|| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_a . Compruebe que $H_a^2 = I_3$ y $H_a v = ||v|| e_1$.

Ejercicio 9. 5%.

Sean $a_1, a_2, a_3, b_1, b_2, b_3$ algunos vectores del espacio \mathbb{R}^5 tales que

$$b_1 = \frac{a_1}{9}, \qquad b_2 = \frac{a_2 - 3b_1}{7}, \qquad b_3 = \frac{a_3 - 5b_1 + 6b_2}{8}.$$

- I. Escriba cada uno de los vectores a_1 , a_2 , a_3 como una combinación lineal de los vectores b_1 , b_2 , b_3 .
- II. Encuentre una matriz R tal que A = BR, donde A es la matriz formada de las columnas a_1, a_2, a_3, y B es la matriz formada de las columnas b_1, b_2, b_3 .

Ejercicio 10. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} 3 \\ -1 \\ 3 \\ 1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -5 \\ 0 \\ -8 \\ -1 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} -6 \\ 2 \\ -12 \\ -4 \end{bmatrix}.$$

Ejercicio 11. 6%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -4 \\ 3 \\ 3 \\ 1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 6 \\ 1 \\ -6 \\ 4 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 20 \\ -4 \\ -18 \\ 6 \end{bmatrix}.$$

Ejercicio 12. 8%.

Construya una factorización QR de la matriz dada A usando el **algoritmo de Gram–Schmidt**. Haga las comprobaciones: $Q^{T}Q = I_3$, QR = A.

$$A = \begin{bmatrix} -2 & 2 & 1 \\ 2 & -2 & 0 \\ 5 & 9 & -17 \\ 4 & 3 & -15 \end{bmatrix}.$$

Ejercicio 13. 10%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los polinomios $1, x, x^2, x^3$ en el espacio de los polinomios $\mathcal{P}(\mathbb{R})$ con producto interno

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) dx.$$

Calcule la matriz de Gram de los polinomios b_0 , b_1 , b_2 , b_3 obtenidos en este proceso. Para calcular las integrales puede usar la siguiente tabla:

р	0	1	2	3	4	5	6
Ip	2	0	$\frac{2}{3}$	0	$\frac{2}{5}$	0	$\frac{2}{7}$

donde
$$I_{\mathfrak{p}} \coloneqq \int_{-1}^{1} x^{\mathfrak{p}} dx$$
.

Ejercicio 14. 5%.

I. En este ejercicio demostramos el teorema de Pitágoras y un poco más. Sea H un espacio vectorial real con producto interno y sean $a, b \in H$. Demuestre que

$$a \perp b \iff \|a + b\|^2 = \|a\|^2 + \|b\|^2.$$

II. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a}+\mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a}+\mathfrak{b}\|^2-\|\mathfrak{a}\|^2-\|\mathfrak{b}\|^2$.

III. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} no sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

Ejercicio 15. 5%.

I. Sea H un espacio vectorial complejo con producto interno. Demuestre que la norma inducida por el producto interno satisface la identidad de paralelogramo.

II. Demuestre que en el espacio ℓ^{∞} no existe ningún producto interno que induzca la norma de este espacio.

Ejercicio 16. 5%.

Están dados dos vectores en \mathbb{R}^2 :

$$a = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \qquad b = \begin{bmatrix} -7 \\ 4 \end{bmatrix}.$$

Denotemos por \mathfrak{m} al vector $\frac{1}{2}(\mathfrak{a} + \mathfrak{b})$.

I. Calcule $\mathfrak m$ de manera explícita, luego calcule $\|\mathfrak m\|.$

II. Calcule $\|\mathfrak{a}\|, \|\mathfrak{b}\|, \|\mathfrak{a}-\mathfrak{b}\|.$ Calcule $\|\mathfrak{m}\|$ usando el teorema de Apolonio.

Tarea 4. Tema: Espacios con producto interno, variante 0, página 5 de 6

Ejercicio 17. 5%.

Criterio de igualdad en la desigualdad de Schwarz, demostración. Sea H un espacio vectorial complejo con producto interno y sean $a, b \in H$. Supongamos que $a \neq 0_H$ y que

$$|\langle a, b \rangle| = ||a|| ||b||.$$

Pongamos

$$\lambda \coloneqq \frac{\langle b, a \rangle}{\|a\|^2}, \qquad \mathfrak{u} \coloneqq \lambda a, \qquad \mathfrak{w} \coloneqq b - \mathfrak{u}.$$

- I. Demuestre que $w \perp a$. Demuestre que $u \perp w$.
- II. Usando la suposición (la "igualdad de Schwarz") exprese λ y $\|u\|$ en términos de $\|a\|$ y $\|b\|$.
- III. Aplique el teorema de Pitágoras a los vectores u, w, b.
- IV. Muestre que b es un múltiplo de a.

Ejercicio 18. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} -2 \\ 2 \\ 4 \end{bmatrix}, \qquad b = \begin{bmatrix} 5 \\ -5 \\ -10 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y b. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y b son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a, b \rangle| = ||a|| ||b||.$$

Ejercicio 19. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}, \qquad b = \begin{bmatrix} 3 \\ 1 \\ -8 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y $\mathfrak b$. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y $\mathfrak b$ son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a,b\rangle| = ||a|| ||b||.$$

Análisis Matemático IV, Licenciatura en Física y Matemáticas. Tarea 4. Tema: Espacios con producto interno. Variante 1.

Formas sesquilineales, espacios con producto interno, identidad de paralelogramo, desigualdad de Schwarz, proyección ortogonal sobre un subespacio de dimensión finita, ortogonalización de Gram y Schwidt, matriz de Gram..

Nombre: Calificación (%):

Las tareas se califican de manera muy cruel. Es obligatorio escribir los cálculos en las comprobaciones.

Ejercicio 1. 5%.

Sea V un espacio vectorial real con producto interno y sean $a_1, a_2, a_3 \in V$. Calcule la matriz de Gram $G(a_1, a_2, a_3)$, si están dadas las siguientes normas:

$$\|a_1 + a_2\|^2 = 38,$$
 $\|a_1 + a_3\|^2 = 21,$ $\|a_2 + a_3\|^2 = 17,$ $\|a_1 - a_2\|^2 = 22,$ $\|a_1 - a_3\|^2 = 9,$ $\|a_2 - a_3\|^2 = 17.$

Ejercicio 2. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \\ -1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -5 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 5 \\ -4 \\ -2 \\ 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ -9 \\ 2 \\ 9 \end{bmatrix}.$$

- I. Muestre que los vectores a_1 , a_2 , a_3 son ortogonales a pares y calcule sus normas.
- II. Usando el producto interno encuentre coeficientes $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tales que

$$b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$$
.

- III. Haga la comprobación de la igualdad $b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$.
- IV. Haga la comprobación de la identidad de Pitágoras-Parseval:

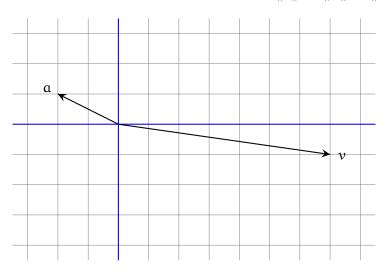
$$||b||^2 = |\lambda_1|^2 ||a_1||^2 + |\lambda_2|^2 ||a_2||^2 + |\lambda_3|^2 ||a_3||^2.$$

Ejercicio 3. 5%.

En el plano castesiano \mathbb{R}^2 están dados dos vectores \mathfrak{a} y \mathfrak{v} .

I. Halle dos vectores $u, w \in \mathbb{R}^2$ tales que $u \in \ell(\mathfrak{a}), w \perp \mathfrak{a} y v = u + w.$

II. Muestre $\mathfrak u$ y $\mathfrak w$ en el dibujo y haga las comprobaciones: $\|\mathfrak v\|^2 = \|\mathfrak u\|^2 + \|\mathfrak w\|^2$, $\mathfrak w \perp \mathfrak a$.



Ejercicio 4. 5%.

En el espacio $V = \mathbb{R}^3$ con el producto interno usual consideramos dos vectores:

$$a = \begin{bmatrix} 4 \\ 5 \\ -2 \end{bmatrix}, \quad b = \begin{bmatrix} -9 \\ -17 \\ 7 \end{bmatrix}.$$

Muestre que $\langle a, b \rangle \neq 0$. Encuentre λ en \mathbb{R} tal que

$$\|\lambda a + b\| < \|b\|.$$

Ejercicio 5. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} 1 \\ 3 \\ 3 \\ -1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 2 \\ -3 \\ 1 \\ -4 \end{bmatrix}, \qquad \nu = \begin{bmatrix} 7 \\ -9 \\ 1 \\ 3 \end{bmatrix}.$$

- I. Muestre que $a_1 \perp a_2$ y calcule las normas $||a_1|| y ||a_2||$.
- II. Halle dos vectores $u \in S$ y $w \in S^{\perp}$ tales que v = u + w, donde S es el subespacio generado por \mathfrak{a}_1 y \mathfrak{a}_2 .
- III. Haga las comprobaciones: $\|\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{w}\|^2$, $\mathbf{w} \perp \mathbf{a}_1$, $\mathbf{w} \perp \mathbf{a}_2$.

Ejercicio 6. 5%.

Está dado un vector $a \in \mathbb{R}^3$:

$$a = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}.$$

Calcule la matriz de proyección ortogonal P_{α} y la matriz de reflexión ortogonal H_{α} . Verifique que las matrices P_{α} y H_{α} son simétricas y calcule directamente las siguientes expresiones:

$$P_{\alpha}a$$
, P_{α}^2 , $H_{\alpha}a$, H_{α}^2 .

Ejercicio 7. 5%.

Está dado un vector $v \in \mathbb{R}^2$:

$$v = \left[\begin{array}{c} -12 \\ 5 \end{array} \right].$$

Encuentre la **reflexión de Householder** que corresponde al vector ν . En otras palabras, calcule un vector $\alpha \in \mathbb{R}^2$ tal que $H_\alpha \nu = \|\nu\| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_α . Compruebe que $H_\alpha^2 = I_2$ y $H_\alpha \nu = \|\nu\| e_1$.

Ejercicio 8. 5%.

Está dado un vector $v \in \mathbb{R}^3$:

$$v = \begin{bmatrix} -2 \\ 3 \\ 6 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector v. En otras palabras, calcule un vector $a \in \mathbb{R}^3$ tal que $H_a v = ||v|| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_a . Compruebe que $H_a^2 = I_3$ y $H_a v = ||v|| e_1$.

Ejercicio 9. 5%.

Sean $a_1, a_2, a_3, b_1, b_2, b_3$ algunos vectores del espacio \mathbb{R}^5 tales que

$$b_1 = \frac{a_1}{6}$$
, $b_2 = \frac{a_2 - 2b_1}{3}$, $b_3 = \frac{a_3 + 9b_1 - b_2}{5}$.

- I. Escriba cada uno de los vectores a_1 , a_2 , a_3 como una combinación lineal de los vectores b_1 , b_2 , b_3 .
- II. Encuentre una matriz R tal que A = BR, donde A es la matriz formada de las columnas a_1, a_2, a_3, y B es la matriz formada de las columnas b_1, b_2, b_3 .

Ejercicio 10. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -2 \\ 2 \\ 3 \\ -2 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 1 \\ -3 \\ -8 \\ 5 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 1 \\ 6 \\ 4 \\ -10 \end{bmatrix}.$$

Ejercicio 11. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} 1 \\ 4 \\ 3 \\ 5 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -3 \\ -3 \\ -7 \\ -3 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} -2 \\ 10 \\ -2 \\ 14 \end{bmatrix}.$$

Ejercicio 12. 8%.

Construya una factorización QR de la matriz dada A usando el **algoritmo de Gram–Schmidt**. Haga las comprobaciones: $Q^{T}Q = I_3$, QR = A.

$$A = \begin{bmatrix} -2 & -6 & 6 \\ 4 & 5 & 17 \\ 2 & 6 & -5 \\ -5 & -1 & -30 \end{bmatrix}.$$

Ejercicio 13. 10%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los polinomios $1, x, x^2, x^3$ en el espacio de los polinomios $\mathcal{P}(\mathbb{R})$ con producto interno

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) \frac{1}{\sqrt{1-x^2}} dx.$$

Calcule la matriz de Gram de los polinomios b_0 , b_1 , b_2 , b_3 obtenidos en este proceso. Para calcular las integrales puede usar la siguiente tabla:

р	0	1	2	3	4	5	6	
I_p	π	0	$\frac{\pi}{2}$	0	$\frac{3\pi}{8}$	0	$\frac{5\pi}{16}$	do

londe $I_p := \int_{-1}^{1} x^p \frac{1}{\sqrt{1-x^2}} dx.$

Ejercicio 14. 5%.

I. En este ejercicio demostramos el teorema de Pitágoras y un poco más. Sea H un espacio vectorial real con producto interno y sean $a, b \in H$. Demuestre que

$$a \perp b \iff \|a + b\|^2 = \|a\|^2 + \|b\|^2.$$

II. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a}+\mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a}+\mathfrak{b}\|^2-\|\mathfrak{a}\|^2-\|\mathfrak{b}\|^2$.

III. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} no sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

Ejercicio 15. 5%.

I. Sea H un espacio vectorial complejo con producto interno. Demuestre que la norma inducida por el producto interno satisface la identidad de paralelogramo.

II. Demuestre que en el espacio $L^1([0,1])$ no existe ningún producto interno que induzca la norma de este espacio.

Ejercicio 16. 5%.

Están dados dos vectores en \mathbb{R}^2 :

$$\mathfrak{a} = \left[\begin{array}{c} -1 \\ 5 \end{array} \right], \qquad \mathfrak{b} = \left[\begin{array}{c} 5 \\ 3 \end{array} \right].$$

Denotemos por \mathfrak{m} al vector $\frac{1}{2}(\mathfrak{a} + \mathfrak{b})$.

I. Calcule $\mathfrak m$ de manera explícita, luego calcule $\|\mathfrak m\|.$

II. Calcule $\|\mathfrak{a}\|, \|\mathfrak{b}\|, \|\mathfrak{a}-\mathfrak{b}\|.$ Calcule $\|\mathfrak{m}\|$ usando el teorema de Apolonio.

Tarea 4. Tema: Espacios con producto interno, variante 1, página 5 de 6

Ejercicio 17. 5%.

Criterio de igualdad en la desigualdad de Schwarz, demostración. Sea H un espacio vectorial complejo con producto interno y sean $a, b \in H$. Supongamos que $a \neq 0_H$ y que

$$|\langle a, b \rangle| = ||a|| \, ||b||.$$

Pongamos

$$\lambda \coloneqq \frac{\langle b, a \rangle}{\|a\|^2}, \qquad \mathfrak{u} \coloneqq \lambda a, \qquad \mathfrak{w} \coloneqq b - \mathfrak{u}.$$

- I. Demuestre que $w \perp a$. Demuestre que $u \perp w$.
- II. Usando la suposición (la "igualdad de Schwarz") exprese λ y $\|u\|$ en términos de $\|a\|$ y $\|b\|$.
- III. Aplique el teorema de Pitágoras a los vectores u, w, b.
- IV. Muestre que b es un múltiplo de a.

Ejercicio 18. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} 10 \\ 14 \\ -4 \end{bmatrix}, \qquad b = \begin{bmatrix} 15 \\ 21 \\ -6 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y $\mathfrak b$. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y $\mathfrak b$ son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a, b \rangle| = ||a|| ||b||.$$

Ejercicio 19. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} 3 \\ 5 \\ -4 \end{bmatrix}, \qquad b = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y $\mathfrak b$. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y $\mathfrak b$ son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a,b\rangle| = ||a|| ||b||.$$

Análisis Matemático IV, Licenciatura en Física y Matemáticas. Tarea 4. Tema: Espacios con producto interno. Variante 2.

Formas sesquilineales, espacios con producto interno, identidad de paralelogramo, desigualdad de Schwarz, proyección ortogonal sobre un subespacio de dimensión finita, ortogonalización de Gram y Schwidt, matriz de Gram..

Nombre: Calificación (%):

Las tareas se califican de manera muy cruel. Es obligatorio escribir los cálculos en las comprobaciones.

Ejercicio 1. 5%.

Sea V un espacio vectorial real con producto interno y sean $a_1, a_2, a_3 \in V$. Calcule la matriz de Gram $G(a_1, a_2, a_3)$, si están dadas las siguientes normas:

$$\begin{split} \|\alpha_1 + \alpha_2\|^2 &= 25, & \|\alpha_1 + \alpha_3\|^2 &= 54, & \|\alpha_2 + \alpha_3\|^2 &= 5, \\ \|\alpha_1 - \alpha_2\|^2 &= 41, & \|\alpha_1 - \alpha_3\|^2 &= 42, & \|\alpha_2 - \alpha_3\|^2 &= 101. \end{split}$$

Ejercicio 2. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} -1 \\ 6 \\ 3 \\ 1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -2 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 4 \\ -2 \\ 5 \\ 1 \end{bmatrix}, \qquad b = \begin{bmatrix} -3 \\ 1 \\ 11 \\ 5 \end{bmatrix}.$$

- I. Muestre que los vectores a_1 , a_2 , a_3 son ortogonales a pares y calcule sus normas.
- II. Usando el producto interno encuentre coeficientes $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tales que

$$b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$$
.

- III. Haga la comprobación de la igualdad $b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$.
- IV. Haga la comprobación de la identidad de Pitágoras-Parseval:

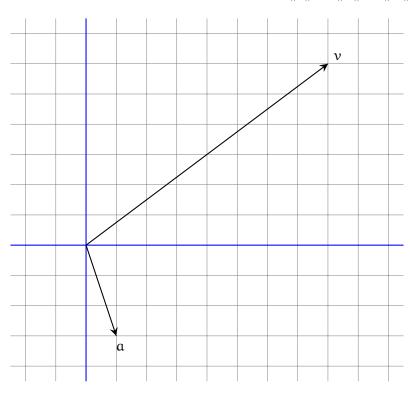
$$||b||^2 = |\lambda_1|^2 ||a_1||^2 + |\lambda_2|^2 ||a_2||^2 + |\lambda_3|^2 ||a_3||^2.$$

Ejercicio 3. 5%.

En el plano castesiano \mathbb{R}^2 están dados dos vectores \mathfrak{a} y \mathfrak{v} .

I. Halle dos vectores $u, w \in \mathbb{R}^2$ tales que $u \in \ell(\mathfrak{a}), w \perp \mathfrak{a} y v = u + w.$

II. Muestre \mathfrak{u} y \mathfrak{w} en el dibujo y haga las comprobaciones: $\|\mathfrak{v}\|^2 = \|\mathfrak{u}\|^2 + \|\mathfrak{w}\|^2$, $\mathfrak{w} \perp \mathfrak{a}$.



Ejercicio 4. 5%.

En el espacio $V=\mathbb{R}^3$ con el producto interno usual consideramos dos vectores:

$$a = \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix}, \quad b = \begin{bmatrix} 16 \\ 3 \\ 3 \end{bmatrix}.$$

Muestre que $\langle a,b\rangle \neq 0.$ Encuentre λ en $\mathbb R$ tal que

$$\|\lambda a + b\| < \|b\|.$$

Tarea 4. Tema: Espacios con producto interno, variante 2, página 2 de 6

Ejercicio 5. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$\alpha_1 = \begin{bmatrix} 4 \\ -2 \\ 5 \\ 1 \end{bmatrix}, \qquad \alpha_2 = \begin{bmatrix} -1 \\ 6 \\ 3 \\ 1 \end{bmatrix}, \qquad \nu = \begin{bmatrix} -11 \\ 5 \\ 1 \\ 3 \end{bmatrix}.$$

- I. Muestre que $a_1 \perp a_2$ y calcule las normas $||a_1|| y ||a_2||$.
- II. Halle dos vectores $\mathfrak{u} \in S$ y $w \in S^{\perp}$ tales que $\mathfrak{v} = \mathfrak{u} + w$, donde S es el subespacio generado por \mathfrak{a}_1 y \mathfrak{a}_2 .
- III. Haga las comprobaciones: $\|\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{w}\|^2$, $\mathbf{w} \perp \mathbf{a}_1$, $\mathbf{w} \perp \mathbf{a}_2$.

Ejercicio 6. 5%.

Está dado un vector $a \in \mathbb{R}^3$:

$$a = \begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix}.$$

Calcule la matriz de proyección ortogonal P_{α} y la matriz de reflexión ortogonal H_{α} . Verifique que las matrices P_{α} y H_{α} son simétricas y calcule directamente las siguientes expresiones:

$$P_{\alpha}a$$
, P_{α}^2 , $H_{\alpha}a$, H_{α}^2 .

Ejercicio 7. 5%.

Está dado un vector $v \in \mathbb{R}^2$:

$$v = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector ν . En otras palabras, calcule un vector $\alpha \in \mathbb{R}^2$ tal que $H_\alpha \nu = \|\nu\| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_α . Compruebe que $H_\alpha^2 = I_2$ y $H_\alpha \nu = \|\nu\| e_1$.

Ejercicio 8. 5%.

Está dado un vector $v \in \mathbb{R}^3$:

$$v = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector v. En otras palabras, calcule un vector $a \in \mathbb{R}^3$ tal que $H_a v = ||v|| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_a . Compruebe que $H_a^2 = I_3$ y $H_a v = ||v|| e_1$.

Ejercicio 9. 5%.

Sean $a_1, a_2, a_3, b_1, b_2, b_3$ algunos vectores del espacio \mathbb{R}^5 tales que

$$b_1 = \frac{a_1}{7}, \qquad b_2 = \frac{a_2 - 3b_1}{4}, \qquad b_3 = \frac{a_3 + 2b_1 + 8b_2}{9}.$$

- I. Escriba cada uno de los vectores a_1 , a_2 , a_3 como una combinación lineal de los vectores b_1 , b_2 , b_3 .
- II. Encuentre una matriz R tal que A = BR, donde A es la matriz formada de las columnas a_1, a_2, a_3, y B es la matriz formada de las columnas b_1, b_2, b_3 .

Ejercicio 10. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} 3 \\ 1 \\ 3 \\ -3 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 4 \\ 4 \\ 6 \\ 2 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 10 \\ 8 \\ 16 \\ 10 \end{bmatrix}.$$

Ejercicio 11. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -2 \\ 3 \\ -4 \\ 1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 1 \\ 8 \\ -2 \\ 0 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 11 \\ -7 \\ 18 \\ -5 \end{bmatrix}.$$

Ejercicio 12. 8%.

Construya una factorización QR de la matriz dada A usando el **algoritmo de Gram–Schmidt**. Haga las comprobaciones: $Q^{T}Q = I_3$, QR = A.

$$A = \begin{bmatrix} -4 & -3 & 20 \\ 2 & 0 & -8 \\ 2 & 4 & -5 \\ 1 & 5 & 6 \end{bmatrix}.$$

Ejercicio 13. 10%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los polinomios $1, x, x^2, x^3$ en el espacio de los polinomios $\mathcal{P}(\mathbb{R})$ con producto interno

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) \sqrt{1 - x^2} dx.$$

Calcule la matriz de Gram de los polinomios b_0 , b_1 , b_2 , b_3 obtenidos en este proceso. Para calcular las integrales puede usar la siguiente tabla:

р	0	1	2	3	4	5	6	
Ip	$\frac{\pi}{2}$	0	$\frac{\pi}{8}$	0	$\frac{\pi}{16}$	0	$\frac{5\pi}{128}$	donde

 $I_p \coloneqq \int_{-1}^{1} x^p \sqrt{1 - x^2} \, \mathrm{d}x.$

Ejercicio 14. 5%.

I. En este ejercicio demostramos el teorema de Pitágoras y un poco más. Sea H un espacio vectorial real con producto interno y sean $a, b \in H$. Demuestre que

$$a \perp b \iff \|a + b\|^2 = \|a\|^2 + \|b\|^2.$$

II. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a}+\mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a}+\mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

III. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} no sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

Ejercicio 15. 5%.

I. Sea H un espacio vectorial complejo con producto interno. Demuestre que la norma inducida por el producto interno satisface la identidad de paralelogramo.

II. Demuestre que en el espacio C([0,1]) no existe ningún producto interno que induzca la norma de este espacio.

Ejercicio 16. 5%.

Están dados dos vectores en \mathbb{R}^2 :

$$\mathfrak{a} = \left[\begin{array}{c} 3 \\ -1 \end{array} \right], \qquad \mathfrak{b} = \left[\begin{array}{c} 5 \\ 3 \end{array} \right].$$

Denotemos por \mathfrak{m} al vector $\frac{1}{2}(\mathfrak{a} + \mathfrak{b})$.

I. Calcule $\mathfrak m$ de manera explícita, luego calcule $\|\mathfrak m\|.$

II. Calcule $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$, $\|\mathfrak{a}-\mathfrak{b}\|$. Calcule $\|\mathfrak{m}\|$ usando el teorema de Apolonio.

Tarea 4. Tema: Espacios con producto interno, variante 2, página 5 de 6

Ejercicio 17. 5%.

Criterio de igualdad en la desigualdad de Schwarz, demostración. Sea H un espacio vectorial complejo con producto interno y sean $a, b \in H$. Supongamos que $a \neq 0_H$ y que

$$|\langle a, b \rangle| = ||a|| \, ||b||.$$

Pongamos

$$\lambda \coloneqq \frac{\langle b, a \rangle}{\|a\|^2}, \qquad \mathfrak{u} \coloneqq \lambda a, \qquad \mathfrak{w} \coloneqq b - \mathfrak{u}.$$

- I. Demuestre que $w \perp a$. Demuestre que $u \perp w$.
- II. Usando la suposición (la "igualdad de Schwarz") exprese λ y $\|u\|$ en términos de $\|a\|$ y $\|b\|$.
- III. Aplique el teorema de Pitágoras a los vectores u, w, b.
- IV. Muestre que b es un múltiplo de a.

Ejercicio 18. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} -9 \\ 3 \\ 15 \end{bmatrix}, \qquad b = \begin{bmatrix} 6 \\ -2 \\ -10 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y b. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y b son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a, b \rangle| = ||a|| ||b||.$$

Ejercicio 19. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} -4 \\ 3 \\ 4 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ -2 \\ -3 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y b. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y b son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a,b\rangle| = ||a|| ||b||.$$

Análisis Matemático IV, Licenciatura en Física y Matemáticas. Tarea 4. Tema: Espacios con producto interno. Variante 3.

Formas sesquilineales, espacios con producto interno, identidad de paralelogramo, desigualdad de Schwarz, proyección ortogonal sobre un subespacio de dimensión finita, ortogonalización de Gram y Schwidt, matriz de Gram..

Nombre: Calificación (%):

Las tareas se califican de manera muy cruel. Es obligatorio escribir los cálculos en las comprobaciones.

Ejercicio 1. 5%.

Sea V un espacio vectorial real con producto interno y sean $a_1, a_2, a_3 \in V$. Calcule la matriz de Gram $G(a_1, a_2, a_3)$, si están dadas las siguientes normas:

$$\|a_1 + a_2\|^2 = 50,$$
 $\|a_1 + a_3\|^2 = 77,$ $\|a_2 + a_3\|^2 = 27,$ $\|a_1 - a_2\|^2 = 62,$ $\|a_1 - a_3\|^2 = 9,$ $\|a_2 - a_3\|^2 = 83.$

Ejercicio 2. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} 1 \\ -3 \\ -3 \\ 2 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 2 \\ -3 \\ 1 \\ -4 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 2 \\ 2 \\ -2 \\ -1 \end{bmatrix}, \qquad b = \begin{bmatrix} -3 \\ -12 \\ 4 \\ 1 \end{bmatrix}.$$

- I. Muestre que los vectores a_1 , a_2 , a_3 son ortogonales a pares y calcule sus normas.
- II. Usando el producto interno encuentre coeficientes $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tales que

$$b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$$
.

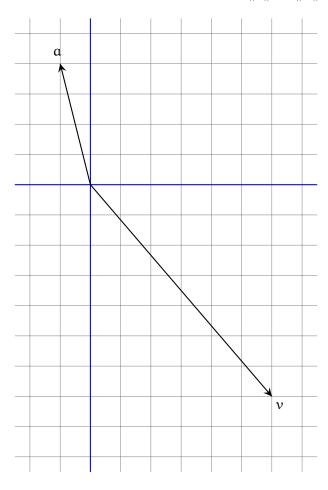
- III. Haga la comprobación de la igualdad $b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$.
- IV. Haga la comprobación de la identidad de Pitágoras-Parseval:

$$||b||^2 = |\lambda_1|^2 ||a_1||^2 + |\lambda_2|^2 ||a_2||^2 + |\lambda_3|^2 ||a_3||^2.$$

Ejercicio 3. 5%.

En el plano castesiano \mathbb{R}^2 están dados dos vectores \mathfrak{a} y \mathfrak{v} .

- I. Halle dos vectores $u, w \in \mathbb{R}^2$ tales que $u \in \ell(a), w \perp a$ y v = u + w.
- II. Muestre $\mathfrak u$ y $\mathfrak w$ en el dibujo y haga las comprobaciones: $\|\mathfrak v\|^2 = \|\mathfrak u\|^2 + \|\mathfrak w\|^2$, $\mathfrak w \perp \mathfrak a$.



Ejercicio 4. 5%.

En el espacio $V=\mathbb{R}^3$ con el producto interno usual consideramos dos vectores:

$$a = \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ -3 \\ 14 \end{bmatrix}.$$

Muestre que $\langle a,b \rangle \neq 0$. Encuentre λ en $\mathbb R$ tal que

$$\|\lambda\alpha+b\|<\|b\|.$$

Tarea 4. Tema: Espacios con producto interno, variante 3, página 2 de 6

Ejercicio 5. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} -2 \\ 3 \\ -1 \\ 1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ -1 \end{bmatrix}, \qquad \nu = \begin{bmatrix} -12 \\ -2 \\ -1 \\ -4 \end{bmatrix}.$$

- I. Muestre que $a_1 \perp a_2$ y calcule las normas $||a_1|| y ||a_2||$.
- II. Halle dos vectores $u \in S$ y $w \in S^{\perp}$ tales que v = u + w, donde S es el subespacio generado por \mathfrak{a}_1 y \mathfrak{a}_2 .
- III. Haga las comprobaciones: $\|\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{w}\|^2$, $\mathbf{w} \perp \mathbf{a}_1$, $\mathbf{w} \perp \mathbf{a}_2$.

Ejercicio 6. 5%.

Está dado un vector $\mathfrak{a} \in \mathbb{R}^3$:

$$a = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}.$$

Calcule la matriz de proyección ortogonal P_{α} y la matriz de reflexión ortogonal H_{α} . Verifique que las matrices P_{α} y H_{α} son simétricas y calcule directamente las siguientes expresiones:

$$P_{\alpha}a$$
, P_{α}^2 , $H_{\alpha}a$, H_{α}^2 .

Ejercicio 7. 5%.

Está dado un vector $v \in \mathbb{R}^2$:

$$v = \begin{bmatrix} -5 \\ 12 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector ν . En otras palabras, calcule un vector $\alpha \in \mathbb{R}^2$ tal que $H_\alpha \nu = \|\nu\| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_α . Compruebe que $H_\alpha^2 = I_2$ y $H_\alpha \nu = \|\nu\| e_1$.

Ejercicio 8. 5%.

Está dado un vector $v \in \mathbb{R}^3$:

$$v = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector v. En otras palabras, calcule un vector $a \in \mathbb{R}^3$ tal que $H_a v = ||v|| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_a . Compruebe que $H_a^2 = I_3$ y $H_a v = ||v|| e_1$.

Ejercicio 9. 5%.

Sean $a_1, a_2, a_3, b_1, b_2, b_3$ algunos vectores del espacio \mathbb{R}^5 tales que

$$b_1 = \frac{a_1}{7}, \qquad b_2 = \frac{a_2 - 6b_1}{8}, \qquad b_3 = \frac{a_3 - 9b_1 + 4b_2}{3}.$$

- I. Escriba cada uno de los vectores a_1 , a_2 , a_3 como una combinación lineal de los vectores b_1 , b_2 , b_3 .
- II. Encuentre una matriz R tal que A = BR, donde A es la matriz formada de las columnas a_1, a_2, a_3, y B es la matriz formada de las columnas b_1, b_2, b_3 .

Ejercicio 10. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -1 \\ -1 \\ 2 \\ 3 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 7 \\ 5 \\ -3 \\ -4 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 13 \\ 11 \\ -12 \\ -4 \end{bmatrix}.$$

Ejercicio 11. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -2 \\ 4 \\ -3 \\ 4 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 7 \\ -2 \\ 1 \\ -5 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} -21 \\ 6 \\ -3 \\ 15 \end{bmatrix}.$$

Ejercicio 12. 8%.

Construya una factorización QR de la matriz dada A usando el **algoritmo de Gram–Schmidt**. Haga las comprobaciones: $Q^{T}Q = I_3$, QR = A.

$$A = \begin{bmatrix} -2 & 3 & 16 \\ 4 & 2 & 10 \\ 5 & 7 & 30 \\ -2 & -6 & -19 \end{bmatrix}.$$

Ejercicio 13. 10%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los polinomios $1, x, x^2, x^3$ en el espacio de los polinomios $\mathcal{P}(\mathbb{R})$ con producto interno

$$\langle f, g \rangle \coloneqq \int_{-\infty}^{\infty} f(x)g(x) e^{-x^2} dx.$$

Calcule la matriz de Gram de los polinomios b_0 , b_1 , b_2 , b_3 obtenidos en este proceso. Para calcular las integrales puede usar la siguiente tabla:

р	0	1	2	3	4	5	6	
Ip	$\sqrt{\pi}$	0	$\frac{\sqrt{\pi}}{2}$	0	$\frac{3\sqrt{\pi}}{4}$	0	$\frac{15\sqrt{\pi}}{8}$	donde

donde
$$I_p := \int_{-\infty}^{\infty} x^p e^{-x^2} dx$$
.

Ejercicio 14. 5%.

I. En este ejercicio demostramos el teorema de Pitágoras y un poco más. Sea H un espacio vectorial real con producto interno y sean $a, b \in H$. Demuestre que

$$a \perp b \iff \|a + b\|^2 = \|a\|^2 + \|b\|^2.$$

II. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

III. Construya en \mathbb{R}^3 dos vectores \mathfrak{a} , \mathfrak{b} con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} no sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

Ejercicio 15. 5%.

I. Sea H un espacio vectorial complejo con producto interno. Demuestre que la norma inducida por el producto interno satisface la identidad de paralelogramo.

II. Sea V el espacio vectorial de polinomios de grado ≤ 3 con coeficientes reales o complejos, con la siguiente norma:

$$\mathrm{si}\ f(t) = \sum_{k=0}^3 \alpha_k t^k, \qquad \|f\| \coloneqq \sum_{k=0}^3 \frac{|\alpha_k|}{k!}.$$

Demuestre que en V no existe ningún producto interno que induzca esta norma.

Ejercicio 16. 5%.

Están dados dos vectores en \mathbb{R}^2 :

$$a = \begin{bmatrix} -2 \\ -4 \end{bmatrix}, \quad b = \begin{bmatrix} 6 \\ -2 \end{bmatrix}.$$

Denotemos por \mathfrak{m} al vector $\frac{1}{2}(\mathfrak{a} + \mathfrak{b})$.

I. Calcule m de manera explícita, luego calcule $\|\mathbf{m}\|$.

II. Calcule $\|a\|$, $\|b\|$, $\|a-b\|$. Calcule $\|m\|$ usando el teorema de Apolonio.

Tarea 4. Tema: Espacios con producto interno, variante 3, página 5 de 6

Ejercicio 17. 5%.

Criterio de igualdad en la desigualdad de Schwarz, demostración. Sea H un espacio vectorial complejo con producto interno y sean $a, b \in H$. Supongamos que $a \neq 0_H$ y que

$$|\langle a, b \rangle| = ||a|| \, ||b||.$$

Pongamos

$$\lambda \coloneqq \frac{\langle b, a \rangle}{\|a\|^2}, \qquad \mathfrak{u} \coloneqq \lambda a, \qquad \mathfrak{w} \coloneqq b - \mathfrak{u}.$$

- I. Demuestre que $w \perp a$. Demuestre que $u \perp w$.
- II. Usando la suposición (la "igualdad de Schwarz") exprese λ y $\|u\|$ en términos de $\|a\|$ y $\|b\|$.
- III. Aplique el teorema de Pitágoras a los vectores u, w, b.
- IV. Muestre que b es un múltiplo de a.

Ejercicio 18. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} 14 \\ 21 \\ -14 \end{bmatrix}, \qquad b = \begin{bmatrix} 10 \\ 15 \\ -10 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y $\mathfrak b$. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y $\mathfrak b$ son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a, b \rangle| = ||a|| ||b||.$$

Ejercicio 19. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} -5 \\ 3 \\ 2 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ 5 \\ -3 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y b. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y b son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a,b\rangle| = ||a|| ||b||.$$

Análisis Matemático IV, Licenciatura en Física y Matemáticas. Tarea 4. Tema: Espacios con producto interno. Variante 4.

Formas sesquilineales, espacios con producto interno, identidad de paralelogramo, desigualdad de Schwarz, proyección ortogonal sobre un subespacio de dimensión finita, ortogonalización de Gram y Schwidt, matriz de Gram..

Nombre: Calificación (%):

Las tareas se califican de manera muy cruel. Es obligatorio escribir los cálculos en las comprobaciones.

Ejercicio 1. 5%.

Sea V un espacio vectorial real con producto interno y sean $a_1, a_2, a_3 \in V$. Calcule la matriz de Gram $G(a_1, a_2, a_3)$, si están dadas las siguientes normas:

$$\|\alpha_1 + \alpha_2\|^2 = 17,$$
 $\|\alpha_1 + \alpha_3\|^2 = 26,$ $\|\alpha_2 + \alpha_3\|^2 = 61,$ $\|\alpha_1 - \alpha_2\|^2 = 85,$ $\|\alpha_1 - \alpha_3\|^2 = 34,$ $\|\alpha_2 - \alpha_3\|^2 = 13.$

Ejercicio 2. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} 1 \\ 3 \\ -3 \\ -1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -2 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 4 \\ 2 \\ 3 \\ 1 \end{bmatrix}, \qquad b = \begin{bmatrix} -11 \\ 1 \\ 3 \\ 3 \end{bmatrix}.$$

- I. Muestre que los vectores a_1, a_2, a_3 son ortogonales a pares y calcule sus normas.
- II. Usando el producto interno encuentre coeficientes $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tales que

$$b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$$
.

- III. Haga la comprobación de la igualdad $b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$.
- IV. Haga la comprobación de la identidad de Pitágoras-Parseval:

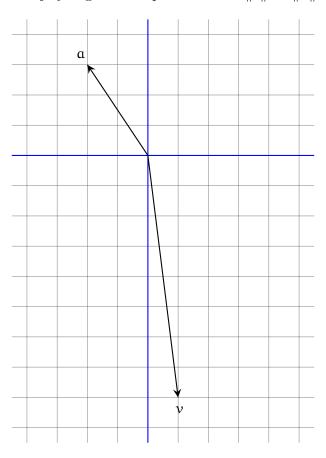
$$||b||^2 = |\lambda_1|^2 ||a_1||^2 + |\lambda_2|^2 ||a_2||^2 + |\lambda_3|^2 ||a_3||^2.$$

Ejercicio 3. 5%.

En el plano castesiano \mathbb{R}^2 están dados dos vectores \mathfrak{a} y \mathfrak{v} .

I. Halle dos vectores $u, w \in \mathbb{R}^2$ tales que $u \in \ell(\mathfrak{a}), w \perp \mathfrak{a} y v = u + w.$

II. Muestre $\mathfrak u$ y $\mathfrak w$ en el dibujo y haga las comprobaciones: $\|\mathfrak v\|^2 = \|\mathfrak u\|^2 + \|\mathfrak w\|^2$, $\mathfrak w \perp \mathfrak a$.



Ejercicio 4. 5%.

En el espacio $V = \mathbb{R}^3$ con el producto interno usual consideramos dos vectores:

$$a = \begin{bmatrix} 4 \\ 5 \\ -2 \end{bmatrix}, \quad b = \begin{bmatrix} -9 \\ -17 \\ 7 \end{bmatrix}.$$

Muestre que $\langle \mathfrak{a},\mathfrak{b}\rangle \neq 0.$ Encuentre λ en $\mathbb R$ tal que

$$\|\lambda a + b\| < \|b\|.$$

Tarea 4. Tema: Espacios con producto interno, variante 4, página 2 de 6

Ejercicio 5. 5%.

En el espacio euclidiano \mathbb{R}^4 consideramos los siguientes vectores:

$$a_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \\ -3 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} 5 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \qquad \nu = \begin{bmatrix} -3 \\ -10 \\ -2 \\ -2 \end{bmatrix}.$$

- I. Muestre que $a_1 \perp a_2$ y calcule las normas $||a_1|| y ||a_2||$.
- II. Halle dos vectores $u \in S$ y $w \in S^{\perp}$ tales que v = u + w, donde S es el subespacio generado por \mathfrak{a}_1 y \mathfrak{a}_2 .
- III. Haga las comprobaciones: $\|\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{w}\|^2$, $\mathbf{w} \perp \mathbf{a}_1$, $\mathbf{w} \perp \mathbf{a}_2$.

Ejercicio 6. 5%.

Está dado un vector $a \in \mathbb{R}^3$:

$$a = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}.$$

Calcule la matriz de proyección ortogonal P_{α} y la matriz de reflexión ortogonal H_{α} . Verifique que las matrices P_{α} y H_{α} son simétricas y calcule directamente las siguientes expresiones:

$$P_{\alpha}a$$
, P_{α}^2 , $H_{\alpha}a$, H_{α}^2 .

Ejercicio 7. 5%.

Está dado un vector $v \in \mathbb{R}^2$:

$$v = \begin{bmatrix} 12 \\ -5 \end{bmatrix}$$
.

Encuentre la **reflexión de Householder** que corresponde al vector ν . En otras palabras, calcule un vector $\alpha \in \mathbb{R}^2$ tal que $H_\alpha \nu = \|\nu\| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_α . Compruebe que $H_\alpha^2 = I_2$ y $H_\alpha \nu = \|\nu\| e_1$.

Ejercicio 8. 5%.

Está dado un vector $v \in \mathbb{R}^3$:

$$v = \begin{bmatrix} -3 \\ -2 \\ 6 \end{bmatrix}.$$

Encuentre la **reflexión de Householder** que corresponde al vector v. En otras palabras, calcule un vector $a \in \mathbb{R}^3$ tal que $H_a v = ||v|| e_1$, donde e_1 es el primer vector de la base canónica de \mathbb{R}^n . Calcule la matriz H_a . Compruebe que $H_a^2 = I_3$ y $H_a v = ||v|| e_1$.

Ejercicio 9. 5%.

Sean $a_1, a_2, a_3, b_1, b_2, b_3$ algunos vectores del espacio \mathbb{R}^5 tales que

$$b_1 = \frac{a_1}{7}, \qquad b_2 = \frac{a_2 - 2b_1}{9}, \qquad b_3 = \frac{a_3 - 6b_1 + 8b_2}{4}.$$

- I. Escriba cada uno de los vectores a_1 , a_2 , a_3 como una combinación lineal de los vectores b_1 , b_2 , b_3 .
- II. Encuentre una matriz R tal que A = BR, donde A es la matriz formada de las columnas a_1, a_2, a_3, y B es la matriz formada de las columnas b_1, b_2, b_3 .

Ejercicio 10. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -1 \\ -4 \\ 6 \\ 1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -3 \\ 0 \\ 9 \\ -3 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 0 \\ 30 \\ -4 \\ -18 \end{bmatrix}.$$

Ejercicio 11. 6%.

Aplique el proceso de ortogonalización de Gram-Schmidt a los vectores $a_1, a_2, a_3 \in \mathbb{R}^4$. Concluya si los vectores a_1, a_2, a_3 son linealmente independientes. Para comprobar que los vectores construidos b_1, b_2, b_3 son ortogonales calcule su matriz de Gram $G(b_1, b_2, b_3)$. Escriba cada uno de los vectores a_1, a_2, a_3 como una combinación lineal de los vectores b_1, b_2, b_3 y viceversa.

$$a_1 = \begin{bmatrix} -4 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -2 \\ 2 \\ 7 \\ -2 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 22 \\ -1 \\ 7 \\ -13 \end{bmatrix}.$$

Ejercicio 12. 8%.

Construya una factorización QR de la matriz dada A usando el **algoritmo de Gram–Schmidt**. Haga las comprobaciones: $Q^{T}Q = I_3$, QR = A.

$$A = \begin{bmatrix} 5 & -9 & 21 \\ 4 & -3 & 7 \\ 2 & 2 & 3 \\ -2 & -2 & -4 \end{bmatrix}.$$

Ejercicio 13. 10%.

Aplique el proceso de ortogonalización de Gram–Schmidt a los polinomios $1, x, x^2, x^3$ en el espacio de los polinomios $\mathcal{P}(\mathbb{R})$ con producto interno

$$\langle f, g \rangle := \int_{0}^{+\infty} f(x)g(x) e^{-x} dx.$$

Calcule la matriz de Gram de los polinomios b_0 , b_1 , b_2 , b_3 obtenidos en este proceso. Para calcular las integrales puede usar la siguiente tabla:

р	0	1	2	3	4	5	6	
I_p	1	1	2	6	24	120	720	do

donde $I_p \coloneqq \int_0^{+\infty} x^p e^{-x} dx$.

Ejercicio 14. 5%.

I. En este ejercicio demostramos el teorema de Pitágoras y un poco más. Sea H un espacio vectorial real con producto interno y sean $a, b \in H$. Demuestre que

$$a \perp b$$
 \iff $\|a+b\|^2 = \|a\|^2 + \|b\|^2$.

II. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

III. Construya en \mathbb{R}^3 dos vectores $\mathfrak{a},\mathfrak{b}$ con componentes enteras no nulas, de tal manera que \mathfrak{a} y \mathfrak{b} no sean ortogonales. Calcule su producto interno. Calcule las normas $\|\mathfrak{a} + \mathfrak{b}\|$, $\|\mathfrak{a}\|$, $\|\mathfrak{b}\|$ y la expresión $\|\mathfrak{a} + \mathfrak{b}\|^2 - \|\mathfrak{a}\|^2 - \|\mathfrak{b}\|^2$.

Ejercicio 15. 5%.

I. Sea H un espacio vectorial complejo con producto interno. Demuestre que la norma inducida por el producto interno satisface la identidad de paralelogramo.

II. Sea V el espacio vectorial de polinomios de grado ≤ 3 con coeficientes reales o complejos, con la siguiente norma:

$$||f|| \coloneqq \sup_{t \in [0,1]} |f(t)|.$$

Demuestre que en V no existe ningún producto interno que induzca esta norma.

Ejercicio 16. 5%.

Están dados dos vectores en \mathbb{R}^2 :

$$a = \begin{bmatrix} 7 \\ -3 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Denotemos por \mathfrak{m} al vector $\frac{1}{2}(\mathfrak{a} + \mathfrak{b})$.

I. Calcule m de manera explícita, luego calcule $\|\mathbf{m}\|$.

II. Calcule $\|a\|$, $\|b\|$, $\|a-b\|$. Calcule $\|m\|$ usando el teorema de Apolonio.

Tarea 4. Tema: Espacios con producto interno, variante 4, página 5 de 6

Ejercicio 17. 5%.

Criterio de igualdad en la desigualdad de Schwarz, demostración. Sea H un espacio vectorial complejo con producto interno y sean $a, b \in H$. Supongamos que $a \neq 0_H$ y que

$$|\langle a, b \rangle| = ||a|| \, ||b||.$$

Pongamos

$$\lambda \coloneqq \frac{\langle b, a \rangle}{\|a\|^2}, \qquad \mathfrak{u} \coloneqq \lambda a, \qquad \mathfrak{w} \coloneqq b - \mathfrak{u}.$$

- I. Demuestre que $w \perp a$. Demuestre que $u \perp w$.
- II. Usando la suposición (la "igualdad de Schwarz") exprese λ y $\|u\|$ en términos de $\|a\|$ y $\|b\|$.
- III. Aplique el teorema de Pitágoras a los vectores u, w, b.
- IV. Muestre que b es un múltiplo de a.

Ejercicio 18. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} 15 \\ 25 \\ -10 \end{bmatrix}, \qquad b = \begin{bmatrix} -12 \\ -20 \\ 8 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y $\mathfrak b$. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y $\mathfrak b$ son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a, b \rangle| = ||a|| ||b||.$$

Ejercicio 19. 5%.

Están dados dos vectores en \mathbb{R}^3 :

$$a = \begin{bmatrix} 5 \\ -2 \\ -3 \end{bmatrix}, \qquad b = \begin{bmatrix} 2 \\ 7 \\ 4 \end{bmatrix}.$$

- I. Considere la matriz M formada por las columnas $\mathfrak a$ y b. Usando operaciones elementales por renglones, reduzca la matriz M a una forma escalonada o pseudoescalonada. Determine el rango de M. Concluya si los vectores $\mathfrak a$ y b son linealmente dependientes o no.
- II. Verifique si se cumple la igualdad

$$|\langle a,b\rangle| = ||a|| ||b||.$$